Loading…

Tailoring the optoelectronic properties of donor–acceptor–donor type π-conjugated polymers via incorporating different electron-acceptor moieties

Syntheses of donor–acceptor–donor type of π-conjugated monomers were performed to examine the effect of the acceptor units' strength on the electrochemical and optoelectrochemical properties of the resulting monomer and polymer. Palladium catalyzed Stille cross-coupling reaction of an organotin...

Full description

Saved in:
Bibliographic Details
Published in:Thin solid films 2012-01, Vol.520 (7), p.2960-2965
Main Authors: Tarkuc, Simge, Udum, Yasemin Arslan, Toppare, Levent
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Syntheses of donor–acceptor–donor type of π-conjugated monomers were performed to examine the effect of the acceptor units' strength on the electrochemical and optoelectrochemical properties of the resulting monomer and polymer. Palladium catalyzed Stille cross-coupling reaction of an organotin reagent with an organic electrophile was used for the synthesis of target monomers, 5,8-bis(4-hexylthiophen-2-yl)-2-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-3-(2,3-dihydrobenzo[b][1,4]dioxin-7-yl)quinoxaline (DBQHT) and 10,13-bis(4-hexylthiophen-2-yl)dibenzo[a,c]phenazine (PHEHT). The presence of the strong electron-donating ethylenedioxy groups on pendant phenyl rings increased electron density on DBQHT, thus the oxidation potential of DBQHT shifts to a lower value than that of PHEHT. The π–π* absorption maximum of PPHEHT was about 40nm red-shifted compare to that of PDBQHT, which can be attributed to the increase of the effective conjugation and coplanarity of PPHEHT relative to PDBQHT via using phenanthrene fused quinoxaline unit as the acceptor. The electronic band gap of polymer, defined as the onset of the π–π* transition, is found to be 1.65eV for PPHEHT and 1.82eV for PDBQHT. Both polymer films showed multi-color electrochromism. PDBQHT can be switched between a red neutral state and a green oxidized state with two intermediate states; purple and brown. PPHEHT also shows multicolored electrochromic behavior with three distinct states: a blue neutral state, a gray intermediate state, and a green oxidized state.
ISSN:0040-6090
1879-2731
DOI:10.1016/j.tsf.2011.10.034