Loading…
Tailoring the optoelectronic properties of donor–acceptor–donor type π-conjugated polymers via incorporating different electron-acceptor moieties
Syntheses of donor–acceptor–donor type of π-conjugated monomers were performed to examine the effect of the acceptor units' strength on the electrochemical and optoelectrochemical properties of the resulting monomer and polymer. Palladium catalyzed Stille cross-coupling reaction of an organotin...
Saved in:
Published in: | Thin solid films 2012-01, Vol.520 (7), p.2960-2965 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Syntheses of donor–acceptor–donor type of π-conjugated monomers were performed to examine the effect of the acceptor units' strength on the electrochemical and optoelectrochemical properties of the resulting monomer and polymer. Palladium catalyzed Stille cross-coupling reaction of an organotin reagent with an organic electrophile was used for the synthesis of target monomers, 5,8-bis(4-hexylthiophen-2-yl)-2-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-3-(2,3-dihydrobenzo[b][1,4]dioxin-7-yl)quinoxaline (DBQHT) and 10,13-bis(4-hexylthiophen-2-yl)dibenzo[a,c]phenazine (PHEHT).
The presence of the strong electron-donating ethylenedioxy groups on pendant phenyl rings increased electron density on DBQHT, thus the oxidation potential of DBQHT shifts to a lower value than that of PHEHT. The π–π* absorption maximum of PPHEHT was about 40nm red-shifted compare to that of PDBQHT, which can be attributed to the increase of the effective conjugation and coplanarity of PPHEHT relative to PDBQHT via using phenanthrene fused quinoxaline unit as the acceptor. The electronic band gap of polymer, defined as the onset of the π–π* transition, is found to be 1.65eV for PPHEHT and 1.82eV for PDBQHT. Both polymer films showed multi-color electrochromism. PDBQHT can be switched between a red neutral state and a green oxidized state with two intermediate states; purple and brown. PPHEHT also shows multicolored electrochromic behavior with three distinct states: a blue neutral state, a gray intermediate state, and a green oxidized state. |
---|---|
ISSN: | 0040-6090 1879-2731 |
DOI: | 10.1016/j.tsf.2011.10.034 |