Loading…
Printed hydrogen sulfide gas sensor on paper substrate based on polyaniline composite
The fabrication of a hydrogen sulfide (H2S) sensor based on polyaniline (PANI)-metal salt (CuCl2) composite is demonstrated. The sensing film was produced by screen printing and spray coating of the sensing material on interdigitated silver electrodes inkjet-printed on a paper substrate. The H2S sen...
Saved in:
Published in: | Thin solid films 2013-05, Vol.534, p.621-628 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The fabrication of a hydrogen sulfide (H2S) sensor based on polyaniline (PANI)-metal salt (CuCl2) composite is demonstrated. The sensing film was produced by screen printing and spray coating of the sensing material on interdigitated silver electrodes inkjet-printed on a paper substrate. The H2S sensing functionality with respect to pH and metal salt concentration was optimized. In addition, the long term stability and humidity effects on the sensor performance were investigated. The printed chemiresistors showed more than five orders of magnitude change in resistance within 20min of exposure of 15ppm H2S at room temperature. The relatively fast kinetics and large response of the sensor can be explained by the formation of Cu2S and subsequent protonation of PANI. In addition, the relatively large roughness and porosity of the paper substrate offers an increased surface sensing area.
•pH, salt concentration, film thickness, cross sensitivity•Printed sensor on paper substrate•Commercial polyaniline against special morphologies |
---|---|
ISSN: | 0040-6090 1879-2731 |
DOI: | 10.1016/j.tsf.2013.02.055 |