Loading…
Twisting fatigue in multilayer films of Ag-alloy with indium tin oxide on polyethylene terephthalate for flexible electronics devices
Twisting monotonic and fatigue experiments were conducted on multi-layered films of Ag-alloy based indium tin oxide (ITO) deposited on polyethylene terephthalate (PET). In the twisting tests, crack development and electrical resistance were monitored in situ. Cracks initiated at an angle of 39°±1.7°...
Saved in:
Published in: | Thin solid films 2018-01, Vol.645, p.241-252 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Twisting monotonic and fatigue experiments were conducted on multi-layered films of Ag-alloy based indium tin oxide (ITO) deposited on polyethylene terephthalate (PET). In the twisting tests, crack development and electrical resistance were monitored in situ. Cracks initiated at an angle of 39°±1.7° and propagated towards the direction of the sample length. Two sets of experiments were performed; the first set of experiments was conducted to study the effect of twisting angle and temperature on the film's electromechanical performance. The other set of experiments was conducted to study the effect of temperature in the absence of cyclic twisting deformation. The change in electrical resistance increased with number of twisting cycles and twisting angle. In addition, the highest change in electrical resistance was observed for samples subjected to cyclic fatigue at 100°C, which is attributed to crack growth and oxidation of the Ag-alloy layer. The cracks were observed to initiate not only from coating defects but also from edge defects. Development of cracks is accelerated due to the combined effects of the external repeated stress and temperature. Therefore, it is suggested that controlling temperature when using ITO/Ag-alloy/ITO thin film under mechanical stress is important for electrical device performance; temperatures in both fabrication and use should not exceed 50°C.
•Twisting experiments on silver-alloy coated indium tin oxide on polymer substrates•Critical twisting angle of 39° in good agreement with calculations•Twisting reliability of multilayer films improved by improving coating quality.•Change in electrical resistance increased with number of twisting cycles and angle.•Crack development accelerated by external repeated stress with temperature. |
---|---|
ISSN: | 0040-6090 1879-2731 |
DOI: | 10.1016/j.tsf.2017.10.047 |