Loading…

Mechanism of indium tin oxide//indium tin oxide direct wafer bonding

•Indium tin oxide (ITO) layers were directly bonded at low-temperature (300°) without pretreatment.•Proposed mechanism of ITO-ITO direct bonding.•Defect-free and robust ITO-ITO bonding interface are demonstrated.•Impact of surface properties on wafer bond were investigated. We utilize indium tin oxi...

Full description

Saved in:
Bibliographic Details
Published in:Thin solid films 2020-06, Vol.704, p.137964, Article 137964
Main Authors: Hönle, Michael, Oberhumer, Peter, Hingerl, Kurt, Wagner, Thorsten, Huppmann, Sophia, Katz, Simeon
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-12bcb080b8baa38a5d058edd8947e04efb4df11c6769e8a0823dee8cb652cef53
cites cdi_FETCH-LOGICAL-c363t-12bcb080b8baa38a5d058edd8947e04efb4df11c6769e8a0823dee8cb652cef53
container_end_page
container_issue
container_start_page 137964
container_title Thin solid films
container_volume 704
creator Hönle, Michael
Oberhumer, Peter
Hingerl, Kurt
Wagner, Thorsten
Huppmann, Sophia
Katz, Simeon
description •Indium tin oxide (ITO) layers were directly bonded at low-temperature (300°) without pretreatment.•Proposed mechanism of ITO-ITO direct bonding.•Defect-free and robust ITO-ITO bonding interface are demonstrated.•Impact of surface properties on wafer bond were investigated. We utilize indium tin oxide (ITO) as a material for direct bonding of Si wafers at low temperatures and without any pretreatment in order to create junctions of Si-ITO//ITO-Si. Transparent conductive oxides combine good conductivity with high optical transparency, rendering them ideal for joining III-V materials with Si based technology, e.g. to fabricate optoelectronic devices like light emitting diodes or solar cells. We found that bonded wafers did not display macroscopic defects and exhibit a bonding energy greater than 1 J/m2 determined by double cantilever beam test. This bonding strength is high enough to bear further front-of-line processing like backside grinding. The bonding interface was investigated by means of transmission electron microscopy to gain insight into the bonding mechanism. We observed that the bonding mechanism proceeds through grain growth of the ITO layers across the original bonding interface upon annealing above the crystallization temperature of ITO. To explore other factors which could influence the obtained wafer bonds, ITO layers were deposited on Si wafers and characterized before and after annealing by atomic force microscopy, scanning electron microscopy and X-Ray crystallography.
doi_str_mv 10.1016/j.tsf.2020.137964
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_tsf_2020_137964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609020301796</els_id><sourcerecordid>S0040609020301796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-12bcb080b8baa38a5d058edd8947e04efb4df11c6769e8a0823dee8cb652cef53</originalsourceid><addsrcrecordid>eNp9kMtOxDAMRSMEEmXgA9jlB9pxkjZNxQoNMCANYgPrKA8HMmJalJTX39NRWbFgZdlXx7IPIecMKgZMLrfVmEPFgU-9aDtZH5CCqbYreSvYISkAaigldHBMTnLeAgDjXBTk6h7di-lj3tEh0Nj7-L6jY-zp8BU9Lpd_J9THhG6knyZgonaY4v75lBwF85rx7LcuyNPN9ePqttw8rO9Wl5vSCSnGknHrLCiwyhojlGk8NAq9V13dItQYbO0DY062skNlQHHhEZWzsuEOQyMWhM17XRpyThj0W4o7k741A73XoLd60qD3GvSsYWIuZganwz4iJp1dxN7h_Ij2Q_yH_gEdcmYp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanism of indium tin oxide//indium tin oxide direct wafer bonding</title><source>Elsevier</source><creator>Hönle, Michael ; Oberhumer, Peter ; Hingerl, Kurt ; Wagner, Thorsten ; Huppmann, Sophia ; Katz, Simeon</creator><creatorcontrib>Hönle, Michael ; Oberhumer, Peter ; Hingerl, Kurt ; Wagner, Thorsten ; Huppmann, Sophia ; Katz, Simeon</creatorcontrib><description>•Indium tin oxide (ITO) layers were directly bonded at low-temperature (300°) without pretreatment.•Proposed mechanism of ITO-ITO direct bonding.•Defect-free and robust ITO-ITO bonding interface are demonstrated.•Impact of surface properties on wafer bond were investigated. We utilize indium tin oxide (ITO) as a material for direct bonding of Si wafers at low temperatures and without any pretreatment in order to create junctions of Si-ITO//ITO-Si. Transparent conductive oxides combine good conductivity with high optical transparency, rendering them ideal for joining III-V materials with Si based technology, e.g. to fabricate optoelectronic devices like light emitting diodes or solar cells. We found that bonded wafers did not display macroscopic defects and exhibit a bonding energy greater than 1 J/m2 determined by double cantilever beam test. This bonding strength is high enough to bear further front-of-line processing like backside grinding. The bonding interface was investigated by means of transmission electron microscopy to gain insight into the bonding mechanism. We observed that the bonding mechanism proceeds through grain growth of the ITO layers across the original bonding interface upon annealing above the crystallization temperature of ITO. To explore other factors which could influence the obtained wafer bonds, ITO layers were deposited on Si wafers and characterized before and after annealing by atomic force microscopy, scanning electron microscopy and X-Ray crystallography.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2020.137964</identifier><language>eng</language><publisher>Elsevier B.V</publisher><ispartof>Thin solid films, 2020-06, Vol.704, p.137964, Article 137964</ispartof><rights>2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-12bcb080b8baa38a5d058edd8947e04efb4df11c6769e8a0823dee8cb652cef53</citedby><cites>FETCH-LOGICAL-c363t-12bcb080b8baa38a5d058edd8947e04efb4df11c6769e8a0823dee8cb652cef53</cites><orcidid>0000-0003-0514-2895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Hönle, Michael</creatorcontrib><creatorcontrib>Oberhumer, Peter</creatorcontrib><creatorcontrib>Hingerl, Kurt</creatorcontrib><creatorcontrib>Wagner, Thorsten</creatorcontrib><creatorcontrib>Huppmann, Sophia</creatorcontrib><creatorcontrib>Katz, Simeon</creatorcontrib><title>Mechanism of indium tin oxide//indium tin oxide direct wafer bonding</title><title>Thin solid films</title><description>•Indium tin oxide (ITO) layers were directly bonded at low-temperature (300°) without pretreatment.•Proposed mechanism of ITO-ITO direct bonding.•Defect-free and robust ITO-ITO bonding interface are demonstrated.•Impact of surface properties on wafer bond were investigated. We utilize indium tin oxide (ITO) as a material for direct bonding of Si wafers at low temperatures and without any pretreatment in order to create junctions of Si-ITO//ITO-Si. Transparent conductive oxides combine good conductivity with high optical transparency, rendering them ideal for joining III-V materials with Si based technology, e.g. to fabricate optoelectronic devices like light emitting diodes or solar cells. We found that bonded wafers did not display macroscopic defects and exhibit a bonding energy greater than 1 J/m2 determined by double cantilever beam test. This bonding strength is high enough to bear further front-of-line processing like backside grinding. The bonding interface was investigated by means of transmission electron microscopy to gain insight into the bonding mechanism. We observed that the bonding mechanism proceeds through grain growth of the ITO layers across the original bonding interface upon annealing above the crystallization temperature of ITO. To explore other factors which could influence the obtained wafer bonds, ITO layers were deposited on Si wafers and characterized before and after annealing by atomic force microscopy, scanning electron microscopy and X-Ray crystallography.</description><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOxDAMRSMEEmXgA9jlB9pxkjZNxQoNMCANYgPrKA8HMmJalJTX39NRWbFgZdlXx7IPIecMKgZMLrfVmEPFgU-9aDtZH5CCqbYreSvYISkAaigldHBMTnLeAgDjXBTk6h7di-lj3tEh0Nj7-L6jY-zp8BU9Lpd_J9THhG6knyZgonaY4v75lBwF85rx7LcuyNPN9ePqttw8rO9Wl5vSCSnGknHrLCiwyhojlGk8NAq9V13dItQYbO0DY062skNlQHHhEZWzsuEOQyMWhM17XRpyThj0W4o7k741A73XoLd60qD3GvSsYWIuZganwz4iJp1dxN7h_Ij2Q_yH_gEdcmYp</recordid><startdate>20200630</startdate><enddate>20200630</enddate><creator>Hönle, Michael</creator><creator>Oberhumer, Peter</creator><creator>Hingerl, Kurt</creator><creator>Wagner, Thorsten</creator><creator>Huppmann, Sophia</creator><creator>Katz, Simeon</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0514-2895</orcidid></search><sort><creationdate>20200630</creationdate><title>Mechanism of indium tin oxide//indium tin oxide direct wafer bonding</title><author>Hönle, Michael ; Oberhumer, Peter ; Hingerl, Kurt ; Wagner, Thorsten ; Huppmann, Sophia ; Katz, Simeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-12bcb080b8baa38a5d058edd8947e04efb4df11c6769e8a0823dee8cb652cef53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hönle, Michael</creatorcontrib><creatorcontrib>Oberhumer, Peter</creatorcontrib><creatorcontrib>Hingerl, Kurt</creatorcontrib><creatorcontrib>Wagner, Thorsten</creatorcontrib><creatorcontrib>Huppmann, Sophia</creatorcontrib><creatorcontrib>Katz, Simeon</creatorcontrib><collection>CrossRef</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hönle, Michael</au><au>Oberhumer, Peter</au><au>Hingerl, Kurt</au><au>Wagner, Thorsten</au><au>Huppmann, Sophia</au><au>Katz, Simeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of indium tin oxide//indium tin oxide direct wafer bonding</atitle><jtitle>Thin solid films</jtitle><date>2020-06-30</date><risdate>2020</risdate><volume>704</volume><spage>137964</spage><pages>137964-</pages><artnum>137964</artnum><issn>0040-6090</issn><eissn>1879-2731</eissn><abstract>•Indium tin oxide (ITO) layers were directly bonded at low-temperature (300°) without pretreatment.•Proposed mechanism of ITO-ITO direct bonding.•Defect-free and robust ITO-ITO bonding interface are demonstrated.•Impact of surface properties on wafer bond were investigated. We utilize indium tin oxide (ITO) as a material for direct bonding of Si wafers at low temperatures and without any pretreatment in order to create junctions of Si-ITO//ITO-Si. Transparent conductive oxides combine good conductivity with high optical transparency, rendering them ideal for joining III-V materials with Si based technology, e.g. to fabricate optoelectronic devices like light emitting diodes or solar cells. We found that bonded wafers did not display macroscopic defects and exhibit a bonding energy greater than 1 J/m2 determined by double cantilever beam test. This bonding strength is high enough to bear further front-of-line processing like backside grinding. The bonding interface was investigated by means of transmission electron microscopy to gain insight into the bonding mechanism. We observed that the bonding mechanism proceeds through grain growth of the ITO layers across the original bonding interface upon annealing above the crystallization temperature of ITO. To explore other factors which could influence the obtained wafer bonds, ITO layers were deposited on Si wafers and characterized before and after annealing by atomic force microscopy, scanning electron microscopy and X-Ray crystallography.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2020.137964</doi><orcidid>https://orcid.org/0000-0003-0514-2895</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2020-06, Vol.704, p.137964, Article 137964
issn 0040-6090
1879-2731
language eng
recordid cdi_crossref_primary_10_1016_j_tsf_2020_137964
source Elsevier
title Mechanism of indium tin oxide//indium tin oxide direct wafer bonding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A28%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20indium%20tin%20oxide//indium%20tin%20oxide%20direct%20wafer%20bonding&rft.jtitle=Thin%20solid%20films&rft.au=H%C3%B6nle,%20Michael&rft.date=2020-06-30&rft.volume=704&rft.spage=137964&rft.pages=137964-&rft.artnum=137964&rft.issn=0040-6090&rft.eissn=1879-2731&rft_id=info:doi/10.1016/j.tsf.2020.137964&rft_dat=%3Celsevier_cross%3ES0040609020301796%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-12bcb080b8baa38a5d058edd8947e04efb4df11c6769e8a0823dee8cb652cef53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true