Loading…
Evaluating UV/H2O2 processes for methyl tert-butyl ether and tertiary butyl alcohol removal : Effect of pretreatment options and light sources
In this paper, we evaluate the efficiency of UV/H2O2 process to remove methyl tert-butyl ether (MtBE) and tertiary butyl alcohol (tBA) from a drinking water source. Kinetic models were used to evaluate the removal efficiency of the UV/H2O2 technologies with different pretreatment options and light s...
Saved in:
Published in: | Water research (Oxford) 2008-12, Vol.42 (20), p.5045-5053 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we evaluate the efficiency of UV/H2O2 process to remove methyl tert-butyl ether (MtBE) and tertiary butyl alcohol (tBA) from a drinking water source. Kinetic models were used to evaluate the removal efficiency of the UV/H2O2 technologies with different pretreatment options and light sources. Two commercial UV light sources, i.e. low pressure, high intensity lamps and medium pressure, high intensity lamps, were evaluated. The following pretreatment alternatives were evaluated: (1) ion exchange softening with seawater regeneration (NaIX); (2) Pellet Softening; (3) weak acid ion exchange (WAIX); and (4) high pH lime softening followed by reverse osmosis (RO). The presence or absence of a dealkalization step prior to the UV/H2O2 Advanced Oxidation Process (AOP) was also evaluated for each pretreatment possibility. Pretreatment has a significant impact on the performance of UV/H2O2 process. The NaIX with dealkalization was shown to be the most cost effective. The electrical energy per order (EEO) values for MtBE and tBA using low pressure high output UV lamps (LPUV) and 10mg/LH2O2 are 0.77 and 3.0 kWh/kgal-order, or 0.20 and 0.79 kWh/m3-order, respectively. For medium pressure UV high output lamps (MPUV), EEO values for MtBE and tBA are 4.6 and 15 kWh/kgal-order, or 1.2 and 4.0 kWh/m3-order, for the same H2O2 dosage. |
---|---|
ISSN: | 0043-1354 1879-2448 |
DOI: | 10.1016/j.watres.2008.09.017 |