Loading…

On a variable-coefficient AB system in a baroclinic flow: Generalized Darboux transformation and non-autonomous localized waves

In this paper, we focus our attention on a variable-coefficient AB system, which models the marginally unstable baroclinic wave packets in a baroclinic flow. With respect to the amplitude of the baroclinic wave packet and correction to the mean flow resulting from the self-rectification of the baroc...

Full description

Saved in:
Bibliographic Details
Published in:Wave motion 2023-10, Vol.122, p.103184, Article 103184
Main Authors: Wu, Xi-Hu, Gao, Yi-Tian, Yu, Xin, Liu, Fei-Yan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c312t-bb131126f854f07d6dc56dc854348f4402be41c58b72e72b7792f84055c850493
cites cdi_FETCH-LOGICAL-c312t-bb131126f854f07d6dc56dc854348f4402be41c58b72e72b7792f84055c850493
container_end_page
container_issue
container_start_page 103184
container_title Wave motion
container_volume 122
creator Wu, Xi-Hu
Gao, Yi-Tian
Yu, Xin
Liu, Fei-Yan
description In this paper, we focus our attention on a variable-coefficient AB system, which models the marginally unstable baroclinic wave packets in a baroclinic flow. With respect to the amplitude of the baroclinic wave packet and correction to the mean flow resulting from the self-rectification of the baroclinic wave, we construct an N-fold generalized Darboux transformation (GDT) via symbolic computation, where N is a positive integer. Via the obtained GDT, several kinds of the non-autonomous localized waves, e.g., the multi-pole solitons, multi-pole breathers, rogue waves and their interactions, are investigated. We have selected four types of the variable coefficients, i.e., constant, linear about t, quadratic about t and trigonometric about t, where t is the normalized retarded time coordinate. We explore the influence of those selected variable coefficients on the non-autonomous localized waves. Moreover, we discuss the bound states among the non-autonomous multiple-pole solitons and one soliton, which exhibit the periodic attractions and repulsions between the adjacent solitons. •We construct an N-fold generalized Darboux transformation for a variable-coefficient AB system in a baroclinicflow.•Several kinds of the non-autonomous localized waves and their bound-states are investigated.•Effects of the variable coefficients on the above non-autonomous localized waves are explored.
doi_str_mv 10.1016/j.wavemoti.2023.103184
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_wavemoti_2023_103184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165212523000707</els_id><sourcerecordid>S0165212523000707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-bb131126f854f07d6dc56dc854348f4402be41c58b72e72b7792f84055c850493</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKuvIHmBqfmbztSVtWoVCt0ouAtJ5gZSZhJJpq268dXN0Lp2cbncyzmHw4fQNSUTSuj0ZjPZqx10oXcTRhjPT05rcYJGtK7qQnD-fopGWVgWjLLyHF2ktCGE0IrPRuhn7bHCOxWd0i0UJoC1zjjwPZ7f4_SVeuiwGzRaxWBa553Btg37W7wED1G17hsa_KCiDttP3Eflkw2xU70L2eUb7IMv1LYPPnRhm3AbzNEztE6X6MyqNsHVcY_R29Pj6-K5WK2XL4v5qjCcsr7QmnJK2dTWpbCkaqaNKfPki4vaCkGYBkFNWeuKQcV0Vc2YrQUpy6whYsbHaHrINTGkFMHKj-g6Fb8kJXLAKDfyD6McMMoDxmy8Oxght9s5iDINeAw0LoLpZRPcfxG_OhWBHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On a variable-coefficient AB system in a baroclinic flow: Generalized Darboux transformation and non-autonomous localized waves</title><source>ScienceDirect Freedom Collection</source><creator>Wu, Xi-Hu ; Gao, Yi-Tian ; Yu, Xin ; Liu, Fei-Yan</creator><creatorcontrib>Wu, Xi-Hu ; Gao, Yi-Tian ; Yu, Xin ; Liu, Fei-Yan</creatorcontrib><description>In this paper, we focus our attention on a variable-coefficient AB system, which models the marginally unstable baroclinic wave packets in a baroclinic flow. With respect to the amplitude of the baroclinic wave packet and correction to the mean flow resulting from the self-rectification of the baroclinic wave, we construct an N-fold generalized Darboux transformation (GDT) via symbolic computation, where N is a positive integer. Via the obtained GDT, several kinds of the non-autonomous localized waves, e.g., the multi-pole solitons, multi-pole breathers, rogue waves and their interactions, are investigated. We have selected four types of the variable coefficients, i.e., constant, linear about t, quadratic about t and trigonometric about t, where t is the normalized retarded time coordinate. We explore the influence of those selected variable coefficients on the non-autonomous localized waves. Moreover, we discuss the bound states among the non-autonomous multiple-pole solitons and one soliton, which exhibit the periodic attractions and repulsions between the adjacent solitons. •We construct an N-fold generalized Darboux transformation for a variable-coefficient AB system in a baroclinicflow.•Several kinds of the non-autonomous localized waves and their bound-states are investigated.•Effects of the variable coefficients on the above non-autonomous localized waves are explored.</description><identifier>ISSN: 0165-2125</identifier><identifier>EISSN: 1878-433X</identifier><identifier>DOI: 10.1016/j.wavemoti.2023.103184</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Baroclinic flow ; Bound state ; Generalized Darboux transformation ; Non-autonomous localized wave ; symbolic computation ; Variable-coefficient AB system</subject><ispartof>Wave motion, 2023-10, Vol.122, p.103184, Article 103184</ispartof><rights>2023 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-bb131126f854f07d6dc56dc854348f4402be41c58b72e72b7792f84055c850493</citedby><cites>FETCH-LOGICAL-c312t-bb131126f854f07d6dc56dc854348f4402be41c58b72e72b7792f84055c850493</cites><orcidid>0000-0002-8019-9384</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wu, Xi-Hu</creatorcontrib><creatorcontrib>Gao, Yi-Tian</creatorcontrib><creatorcontrib>Yu, Xin</creatorcontrib><creatorcontrib>Liu, Fei-Yan</creatorcontrib><title>On a variable-coefficient AB system in a baroclinic flow: Generalized Darboux transformation and non-autonomous localized waves</title><title>Wave motion</title><description>In this paper, we focus our attention on a variable-coefficient AB system, which models the marginally unstable baroclinic wave packets in a baroclinic flow. With respect to the amplitude of the baroclinic wave packet and correction to the mean flow resulting from the self-rectification of the baroclinic wave, we construct an N-fold generalized Darboux transformation (GDT) via symbolic computation, where N is a positive integer. Via the obtained GDT, several kinds of the non-autonomous localized waves, e.g., the multi-pole solitons, multi-pole breathers, rogue waves and their interactions, are investigated. We have selected four types of the variable coefficients, i.e., constant, linear about t, quadratic about t and trigonometric about t, where t is the normalized retarded time coordinate. We explore the influence of those selected variable coefficients on the non-autonomous localized waves. Moreover, we discuss the bound states among the non-autonomous multiple-pole solitons and one soliton, which exhibit the periodic attractions and repulsions between the adjacent solitons. •We construct an N-fold generalized Darboux transformation for a variable-coefficient AB system in a baroclinicflow.•Several kinds of the non-autonomous localized waves and their bound-states are investigated.•Effects of the variable coefficients on the above non-autonomous localized waves are explored.</description><subject>Baroclinic flow</subject><subject>Bound state</subject><subject>Generalized Darboux transformation</subject><subject>Non-autonomous localized wave</subject><subject>symbolic computation</subject><subject>Variable-coefficient AB system</subject><issn>0165-2125</issn><issn>1878-433X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKuvIHmBqfmbztSVtWoVCt0ouAtJ5gZSZhJJpq268dXN0Lp2cbncyzmHw4fQNSUTSuj0ZjPZqx10oXcTRhjPT05rcYJGtK7qQnD-fopGWVgWjLLyHF2ktCGE0IrPRuhn7bHCOxWd0i0UJoC1zjjwPZ7f4_SVeuiwGzRaxWBa553Btg37W7wED1G17hsa_KCiDttP3Eflkw2xU70L2eUb7IMv1LYPPnRhm3AbzNEztE6X6MyqNsHVcY_R29Pj6-K5WK2XL4v5qjCcsr7QmnJK2dTWpbCkaqaNKfPki4vaCkGYBkFNWeuKQcV0Vc2YrQUpy6whYsbHaHrINTGkFMHKj-g6Fb8kJXLAKDfyD6McMMoDxmy8Oxght9s5iDINeAw0LoLpZRPcfxG_OhWBHg</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Wu, Xi-Hu</creator><creator>Gao, Yi-Tian</creator><creator>Yu, Xin</creator><creator>Liu, Fei-Yan</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8019-9384</orcidid></search><sort><creationdate>202310</creationdate><title>On a variable-coefficient AB system in a baroclinic flow: Generalized Darboux transformation and non-autonomous localized waves</title><author>Wu, Xi-Hu ; Gao, Yi-Tian ; Yu, Xin ; Liu, Fei-Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-bb131126f854f07d6dc56dc854348f4402be41c58b72e72b7792f84055c850493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Baroclinic flow</topic><topic>Bound state</topic><topic>Generalized Darboux transformation</topic><topic>Non-autonomous localized wave</topic><topic>symbolic computation</topic><topic>Variable-coefficient AB system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xi-Hu</creatorcontrib><creatorcontrib>Gao, Yi-Tian</creatorcontrib><creatorcontrib>Yu, Xin</creatorcontrib><creatorcontrib>Liu, Fei-Yan</creatorcontrib><collection>CrossRef</collection><jtitle>Wave motion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xi-Hu</au><au>Gao, Yi-Tian</au><au>Yu, Xin</au><au>Liu, Fei-Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a variable-coefficient AB system in a baroclinic flow: Generalized Darboux transformation and non-autonomous localized waves</atitle><jtitle>Wave motion</jtitle><date>2023-10</date><risdate>2023</risdate><volume>122</volume><spage>103184</spage><pages>103184-</pages><artnum>103184</artnum><issn>0165-2125</issn><eissn>1878-433X</eissn><abstract>In this paper, we focus our attention on a variable-coefficient AB system, which models the marginally unstable baroclinic wave packets in a baroclinic flow. With respect to the amplitude of the baroclinic wave packet and correction to the mean flow resulting from the self-rectification of the baroclinic wave, we construct an N-fold generalized Darboux transformation (GDT) via symbolic computation, where N is a positive integer. Via the obtained GDT, several kinds of the non-autonomous localized waves, e.g., the multi-pole solitons, multi-pole breathers, rogue waves and their interactions, are investigated. We have selected four types of the variable coefficients, i.e., constant, linear about t, quadratic about t and trigonometric about t, where t is the normalized retarded time coordinate. We explore the influence of those selected variable coefficients on the non-autonomous localized waves. Moreover, we discuss the bound states among the non-autonomous multiple-pole solitons and one soliton, which exhibit the periodic attractions and repulsions between the adjacent solitons. •We construct an N-fold generalized Darboux transformation for a variable-coefficient AB system in a baroclinicflow.•Several kinds of the non-autonomous localized waves and their bound-states are investigated.•Effects of the variable coefficients on the above non-autonomous localized waves are explored.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.wavemoti.2023.103184</doi><orcidid>https://orcid.org/0000-0002-8019-9384</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0165-2125
ispartof Wave motion, 2023-10, Vol.122, p.103184, Article 103184
issn 0165-2125
1878-433X
language eng
recordid cdi_crossref_primary_10_1016_j_wavemoti_2023_103184
source ScienceDirect Freedom Collection
subjects Baroclinic flow
Bound state
Generalized Darboux transformation
Non-autonomous localized wave
symbolic computation
Variable-coefficient AB system
title On a variable-coefficient AB system in a baroclinic flow: Generalized Darboux transformation and non-autonomous localized waves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A31%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20variable-coefficient%20AB%20system%20in%20a%20baroclinic%20flow:%20Generalized%20Darboux%20transformation%20and%20non-autonomous%20localized%20waves&rft.jtitle=Wave%20motion&rft.au=Wu,%20Xi-Hu&rft.date=2023-10&rft.volume=122&rft.spage=103184&rft.pages=103184-&rft.artnum=103184&rft.issn=0165-2125&rft.eissn=1878-433X&rft_id=info:doi/10.1016/j.wavemoti.2023.103184&rft_dat=%3Celsevier_cross%3ES0165212523000707%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-bb131126f854f07d6dc56dc854348f4402be41c58b72e72b7792f84055c850493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true