Loading…

Modeling of sand transport and elbow erosion in horizontal two-phase slug flow

Horizontal wells play an important role in maximizing the recovery of hydrocarbons from oil and gas reservoirs. During production, if the rate of production of produced fluids with sand particles is low, the deposition of sand particles in horizontal flow lines can wreak havoc on production systems...

Full description

Saved in:
Bibliographic Details
Published in:Wear 2023-06, Vol.523, p.204761, Article 204761
Main Authors: Vieira, Ronald E., Darihaki, Farzin, Shirazi, Siamack A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Horizontal wells play an important role in maximizing the recovery of hydrocarbons from oil and gas reservoirs. During production, if the rate of production of produced fluids with sand particles is low, the deposition of sand particles in horizontal flow lines can wreak havoc on production systems in such a way as to cause increased pressure loss and reduction or loss of production when the pipe is partially or completely blocked. On the other hand, if the production rate of fluids is high, the impact of sand particles on the wall of the pipe will erode the inner surface of the pipe fittings. In this case, erosion can be severe enough to cause a hazardous spill and complete shutdown of systems. Therefore, it is important to quantify the sand transport and erosivity of different flow regimes. Under moderate velocities, there exists a flow regime which is called slug flow which is characterized by the intermittent appearance of liquid slugs propagating through the pipe. Studying the sand deposition and erosion due to sand particles entrained in intermittent flows is extremely difficult since the solid particle velocity magnitudes are coupled with several multiphase flow parameters such as phase distribution and slippage between the phases. This work focuses on the improvement of mechanistic models for predicting critical deposition of sand particles in horizontal pipes and erosion in horizontal-horizontal elbows. In this investigation, a modified model is proposed to better predict the critical deposition velocity and the characteristic particle velocity as a function of the slug flow characteristics. The model predictions are compared with the sand transport and erosion data collected at the University of Tulsa and other research institutions. The results show that the new approach provides improved predictions for sand transport and maximum erosion in standard elbows when compared with existing models. •A model for predicting the critical deposition of sand particles in horizontal pipes under slug flow was developed.•A trajectory-based erosion model based on slug dynamics to calculate the characteristic initial particle velocity is used.•Predicted critical velocities in horizontal pipes and maximum erosion magnitudes in elbows are compared with data.•In general, a good match between the model predictions and data was found.•The proposed models give better results than other models found in the literature.
ISSN:0043-1648
1873-2577
DOI:10.1016/j.wear.2023.204761