Loading…

Revealing the Pnma crystal structure and ion-transport mechanism of the Li3YCl6 solid electrolyte

Chloride solid electrolytes represented by Li3YCl6 excel simultaneously in ionic conductivity, deformability, and oxidative stability; their structure-property relationship would provide guiding principles for designing high-performance solid electrolytes. Here, we report that the prototype system L...

Full description

Saved in:
Bibliographic Details
Published in:Cell reports physical science 2023-06, Vol.4 (6), p.101428, Article 101428
Main Authors: Hu, Lv, Zhu, Jinze, Duan, Chaomin, Zhu, Jinfeng, Wang, Jinzhu, Wang, Kai, Gu, Zhenqi, Xi, Zhiwei, Hao, Jipeng, Chen, Yan, Ma, Jie, Liu, Jin-Xun, Ma, Cheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-98177b6f02cd9263e27054fee640dbc24838b84f9118079bf642902a9ef599083
cites cdi_FETCH-LOGICAL-c344t-98177b6f02cd9263e27054fee640dbc24838b84f9118079bf642902a9ef599083
container_end_page
container_issue 6
container_start_page 101428
container_title Cell reports physical science
container_volume 4
creator Hu, Lv
Zhu, Jinze
Duan, Chaomin
Zhu, Jinfeng
Wang, Jinzhu
Wang, Kai
Gu, Zhenqi
Xi, Zhiwei
Hao, Jipeng
Chen, Yan
Ma, Jie
Liu, Jin-Xun
Ma, Cheng
description Chloride solid electrolytes represented by Li3YCl6 excel simultaneously in ionic conductivity, deformability, and oxidative stability; their structure-property relationship would provide guiding principles for designing high-performance solid electrolytes. Here, we report that the prototype system Li3YCl6 does not exhibit the P3¯m1 symmetry as commonly believed. This structure occurs only when the material partially decomposes at an overly high annealing temperature of 550°C. With the decomposition being suppressed at 450°C, the material shows a Pnma symmetry instead. Based on this orthorhombic structure, the ion-transport mechanism is clarified through neutron diffraction and first-principles computation. Guided by the established structure-property relationship, the efficient ion transport previously achievable only in the low-crystallinity state is realized in highly crystalline materials. The all-solid-state cells formed by this high-crystallinity material and LiNi0.8Mn0.1Co0.1O2 deliver performance exceeding most reported Li3YCl6-based cells; under 3 C at 25°C, the capacity retention is above 80% for 780 cycles. [Display omitted] •Li3YCl6 is reported to have a Pnma structure, not the common P3¯m1 structure•The ion-transport mechanism of Li3YCl6 is established on the basis of Pnma structure•Guided by this finding, the Li-ion conductivity is significantly improved Hu et al. report that the original structural model used to describe the prototype chloride solid electrolyte Li3YCl6 may be incorrect. Considering this finding, they redetermine the crystal structure and establish the ion-transport mechanism accordingly. Guided by the clarified structure-property relationship, the Li-ion conductivity is subsequently improved.
doi_str_mv 10.1016/j.xcrp.2023.101428
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_xcrp_2023_101428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666386423002023</els_id><sourcerecordid>S2666386423002023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-98177b6f02cd9263e27054fee640dbc24838b84f9118079bf642902a9ef599083</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWLQv4CovMDXJpJkE3EjxDwqK6MJVyGRubMpMUpK02Le3Y124cnUvF87l-w5CV5TMKKHiej37smkzY4TV44EzeYImTAhR1VLw0z_7OZrmvCaEsDmljSQTZF5hB6b34ROXFeCXMBhs0z4X0-Nc0taWbQJsQod9DFVJJuRNTAUPYFcm-Dzg6H7Ipa8_Fr3AOfa-w9CDLSn2-wKX6MyZPsP0d16g9_u7t8VjtXx-eFrcLitbc14qJWnTtMIRZjvFRA2sIXPuAAQnXWsZl7VsJXeKUkka1TrBmSLMKHBzpYisLxA7_rUp5pzA6U3yg0l7TYkePem1Hj3p0ZM-ejpAN0cIDsl2HpLO1kOw0Pl0aKC76P_DvwEbvXFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Revealing the Pnma crystal structure and ion-transport mechanism of the Li3YCl6 solid electrolyte</title><source>ScienceDirect Journals</source><creator>Hu, Lv ; Zhu, Jinze ; Duan, Chaomin ; Zhu, Jinfeng ; Wang, Jinzhu ; Wang, Kai ; Gu, Zhenqi ; Xi, Zhiwei ; Hao, Jipeng ; Chen, Yan ; Ma, Jie ; Liu, Jin-Xun ; Ma, Cheng</creator><creatorcontrib>Hu, Lv ; Zhu, Jinze ; Duan, Chaomin ; Zhu, Jinfeng ; Wang, Jinzhu ; Wang, Kai ; Gu, Zhenqi ; Xi, Zhiwei ; Hao, Jipeng ; Chen, Yan ; Ma, Jie ; Liu, Jin-Xun ; Ma, Cheng</creatorcontrib><description>Chloride solid electrolytes represented by Li3YCl6 excel simultaneously in ionic conductivity, deformability, and oxidative stability; their structure-property relationship would provide guiding principles for designing high-performance solid electrolytes. Here, we report that the prototype system Li3YCl6 does not exhibit the P3¯m1 symmetry as commonly believed. This structure occurs only when the material partially decomposes at an overly high annealing temperature of 550°C. With the decomposition being suppressed at 450°C, the material shows a Pnma symmetry instead. Based on this orthorhombic structure, the ion-transport mechanism is clarified through neutron diffraction and first-principles computation. Guided by the established structure-property relationship, the efficient ion transport previously achievable only in the low-crystallinity state is realized in highly crystalline materials. The all-solid-state cells formed by this high-crystallinity material and LiNi0.8Mn0.1Co0.1O2 deliver performance exceeding most reported Li3YCl6-based cells; under 3 C at 25°C, the capacity retention is above 80% for 780 cycles. [Display omitted] •Li3YCl6 is reported to have a Pnma structure, not the common P3¯m1 structure•The ion-transport mechanism of Li3YCl6 is established on the basis of Pnma structure•Guided by this finding, the Li-ion conductivity is significantly improved Hu et al. report that the original structural model used to describe the prototype chloride solid electrolyte Li3YCl6 may be incorrect. Considering this finding, they redetermine the crystal structure and establish the ion-transport mechanism accordingly. Guided by the clarified structure-property relationship, the Li-ion conductivity is subsequently improved.</description><identifier>ISSN: 2666-3864</identifier><identifier>EISSN: 2666-3864</identifier><identifier>DOI: 10.1016/j.xcrp.2023.101428</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>chloride solid electrolytes ; crystal structure ; first-principles computation ; ionic conductivity ; neutron diffraction</subject><ispartof>Cell reports physical science, 2023-06, Vol.4 (6), p.101428, Article 101428</ispartof><rights>2023 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-98177b6f02cd9263e27054fee640dbc24838b84f9118079bf642902a9ef599083</citedby><cites>FETCH-LOGICAL-c344t-98177b6f02cd9263e27054fee640dbc24838b84f9118079bf642902a9ef599083</cites><orcidid>0000-0002-9761-322X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2666386423002023$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Hu, Lv</creatorcontrib><creatorcontrib>Zhu, Jinze</creatorcontrib><creatorcontrib>Duan, Chaomin</creatorcontrib><creatorcontrib>Zhu, Jinfeng</creatorcontrib><creatorcontrib>Wang, Jinzhu</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Gu, Zhenqi</creatorcontrib><creatorcontrib>Xi, Zhiwei</creatorcontrib><creatorcontrib>Hao, Jipeng</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><creatorcontrib>Liu, Jin-Xun</creatorcontrib><creatorcontrib>Ma, Cheng</creatorcontrib><title>Revealing the Pnma crystal structure and ion-transport mechanism of the Li3YCl6 solid electrolyte</title><title>Cell reports physical science</title><description>Chloride solid electrolytes represented by Li3YCl6 excel simultaneously in ionic conductivity, deformability, and oxidative stability; their structure-property relationship would provide guiding principles for designing high-performance solid electrolytes. Here, we report that the prototype system Li3YCl6 does not exhibit the P3¯m1 symmetry as commonly believed. This structure occurs only when the material partially decomposes at an overly high annealing temperature of 550°C. With the decomposition being suppressed at 450°C, the material shows a Pnma symmetry instead. Based on this orthorhombic structure, the ion-transport mechanism is clarified through neutron diffraction and first-principles computation. Guided by the established structure-property relationship, the efficient ion transport previously achievable only in the low-crystallinity state is realized in highly crystalline materials. The all-solid-state cells formed by this high-crystallinity material and LiNi0.8Mn0.1Co0.1O2 deliver performance exceeding most reported Li3YCl6-based cells; under 3 C at 25°C, the capacity retention is above 80% for 780 cycles. [Display omitted] •Li3YCl6 is reported to have a Pnma structure, not the common P3¯m1 structure•The ion-transport mechanism of Li3YCl6 is established on the basis of Pnma structure•Guided by this finding, the Li-ion conductivity is significantly improved Hu et al. report that the original structural model used to describe the prototype chloride solid electrolyte Li3YCl6 may be incorrect. Considering this finding, they redetermine the crystal structure and establish the ion-transport mechanism accordingly. Guided by the clarified structure-property relationship, the Li-ion conductivity is subsequently improved.</description><subject>chloride solid electrolytes</subject><subject>crystal structure</subject><subject>first-principles computation</subject><subject>ionic conductivity</subject><subject>neutron diffraction</subject><issn>2666-3864</issn><issn>2666-3864</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURoMoWLQv4CovMDXJpJkE3EjxDwqK6MJVyGRubMpMUpK02Le3Y124cnUvF87l-w5CV5TMKKHiej37smkzY4TV44EzeYImTAhR1VLw0z_7OZrmvCaEsDmljSQTZF5hB6b34ROXFeCXMBhs0z4X0-Nc0taWbQJsQod9DFVJJuRNTAUPYFcm-Dzg6H7Ipa8_Fr3AOfa-w9CDLSn2-wKX6MyZPsP0d16g9_u7t8VjtXx-eFrcLitbc14qJWnTtMIRZjvFRA2sIXPuAAQnXWsZl7VsJXeKUkka1TrBmSLMKHBzpYisLxA7_rUp5pzA6U3yg0l7TYkePem1Hj3p0ZM-ejpAN0cIDsl2HpLO1kOw0Pl0aKC76P_DvwEbvXFA</recordid><startdate>20230621</startdate><enddate>20230621</enddate><creator>Hu, Lv</creator><creator>Zhu, Jinze</creator><creator>Duan, Chaomin</creator><creator>Zhu, Jinfeng</creator><creator>Wang, Jinzhu</creator><creator>Wang, Kai</creator><creator>Gu, Zhenqi</creator><creator>Xi, Zhiwei</creator><creator>Hao, Jipeng</creator><creator>Chen, Yan</creator><creator>Ma, Jie</creator><creator>Liu, Jin-Xun</creator><creator>Ma, Cheng</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9761-322X</orcidid></search><sort><creationdate>20230621</creationdate><title>Revealing the Pnma crystal structure and ion-transport mechanism of the Li3YCl6 solid electrolyte</title><author>Hu, Lv ; Zhu, Jinze ; Duan, Chaomin ; Zhu, Jinfeng ; Wang, Jinzhu ; Wang, Kai ; Gu, Zhenqi ; Xi, Zhiwei ; Hao, Jipeng ; Chen, Yan ; Ma, Jie ; Liu, Jin-Xun ; Ma, Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-98177b6f02cd9263e27054fee640dbc24838b84f9118079bf642902a9ef599083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>chloride solid electrolytes</topic><topic>crystal structure</topic><topic>first-principles computation</topic><topic>ionic conductivity</topic><topic>neutron diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Lv</creatorcontrib><creatorcontrib>Zhu, Jinze</creatorcontrib><creatorcontrib>Duan, Chaomin</creatorcontrib><creatorcontrib>Zhu, Jinfeng</creatorcontrib><creatorcontrib>Wang, Jinzhu</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Gu, Zhenqi</creatorcontrib><creatorcontrib>Xi, Zhiwei</creatorcontrib><creatorcontrib>Hao, Jipeng</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><creatorcontrib>Liu, Jin-Xun</creatorcontrib><creatorcontrib>Ma, Cheng</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Cell reports physical science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Lv</au><au>Zhu, Jinze</au><au>Duan, Chaomin</au><au>Zhu, Jinfeng</au><au>Wang, Jinzhu</au><au>Wang, Kai</au><au>Gu, Zhenqi</au><au>Xi, Zhiwei</au><au>Hao, Jipeng</au><au>Chen, Yan</au><au>Ma, Jie</au><au>Liu, Jin-Xun</au><au>Ma, Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing the Pnma crystal structure and ion-transport mechanism of the Li3YCl6 solid electrolyte</atitle><jtitle>Cell reports physical science</jtitle><date>2023-06-21</date><risdate>2023</risdate><volume>4</volume><issue>6</issue><spage>101428</spage><pages>101428-</pages><artnum>101428</artnum><issn>2666-3864</issn><eissn>2666-3864</eissn><abstract>Chloride solid electrolytes represented by Li3YCl6 excel simultaneously in ionic conductivity, deformability, and oxidative stability; their structure-property relationship would provide guiding principles for designing high-performance solid electrolytes. Here, we report that the prototype system Li3YCl6 does not exhibit the P3¯m1 symmetry as commonly believed. This structure occurs only when the material partially decomposes at an overly high annealing temperature of 550°C. With the decomposition being suppressed at 450°C, the material shows a Pnma symmetry instead. Based on this orthorhombic structure, the ion-transport mechanism is clarified through neutron diffraction and first-principles computation. Guided by the established structure-property relationship, the efficient ion transport previously achievable only in the low-crystallinity state is realized in highly crystalline materials. The all-solid-state cells formed by this high-crystallinity material and LiNi0.8Mn0.1Co0.1O2 deliver performance exceeding most reported Li3YCl6-based cells; under 3 C at 25°C, the capacity retention is above 80% for 780 cycles. [Display omitted] •Li3YCl6 is reported to have a Pnma structure, not the common P3¯m1 structure•The ion-transport mechanism of Li3YCl6 is established on the basis of Pnma structure•Guided by this finding, the Li-ion conductivity is significantly improved Hu et al. report that the original structural model used to describe the prototype chloride solid electrolyte Li3YCl6 may be incorrect. Considering this finding, they redetermine the crystal structure and establish the ion-transport mechanism accordingly. Guided by the clarified structure-property relationship, the Li-ion conductivity is subsequently improved.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.xcrp.2023.101428</doi><orcidid>https://orcid.org/0000-0002-9761-322X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-3864
ispartof Cell reports physical science, 2023-06, Vol.4 (6), p.101428, Article 101428
issn 2666-3864
2666-3864
language eng
recordid cdi_crossref_primary_10_1016_j_xcrp_2023_101428
source ScienceDirect Journals
subjects chloride solid electrolytes
crystal structure
first-principles computation
ionic conductivity
neutron diffraction
title Revealing the Pnma crystal structure and ion-transport mechanism of the Li3YCl6 solid electrolyte
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A57%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20the%20Pnma%20crystal%20structure%20and%20ion-transport%20mechanism%20of%20the%20Li3YCl6%20solid%20electrolyte&rft.jtitle=Cell%20reports%20physical%20science&rft.au=Hu,%20Lv&rft.date=2023-06-21&rft.volume=4&rft.issue=6&rft.spage=101428&rft.pages=101428-&rft.artnum=101428&rft.issn=2666-3864&rft.eissn=2666-3864&rft_id=info:doi/10.1016/j.xcrp.2023.101428&rft_dat=%3Celsevier_cross%3ES2666386423002023%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-98177b6f02cd9263e27054fee640dbc24838b84f9118079bf642902a9ef599083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true