Loading…

Geometry-preserving expansion microscopy microplates enable high-fidelity nanoscale distortion mapping

Expansion microscopy (ExM) is a versatile super-resolution microscopy pipeline, leveraging nanoscale biomolecular crosslinking and osmotically driven swelling of hydrogels. Currently, ExM is a laborious and skill-intensive technique, involving manual handling of the hydrogels that can compromise the...

Full description

Saved in:
Bibliographic Details
Published in:Cell reports physical science 2023-12, Vol.4 (12), p.101719, Article 101719
Main Authors: Seehra, Rajpinder S., Warrington, Samantha J., Allouis, Benjamin H.K., Sheard, Thomas M.D., Spencer, Michael E., Shakespeare, Tayla, Cadby, Ashley, Bose, Daniel, Strutt, David, Jayasinghe, Izzy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-f6c2cae219cb15fd98a2b7d7f5e3b2c390698e004584a05d6417cfe781466aca3
cites cdi_FETCH-LOGICAL-c344t-f6c2cae219cb15fd98a2b7d7f5e3b2c390698e004584a05d6417cfe781466aca3
container_end_page
container_issue 12
container_start_page 101719
container_title Cell reports physical science
container_volume 4
creator Seehra, Rajpinder S.
Warrington, Samantha J.
Allouis, Benjamin H.K.
Sheard, Thomas M.D.
Spencer, Michael E.
Shakespeare, Tayla
Cadby, Ashley
Bose, Daniel
Strutt, David
Jayasinghe, Izzy
description Expansion microscopy (ExM) is a versatile super-resolution microscopy pipeline, leveraging nanoscale biomolecular crosslinking and osmotically driven swelling of hydrogels. Currently, ExM is a laborious and skill-intensive technique, involving manual handling of the hydrogels that can compromise the integrity of the gels and capacity to track gel isotropy, hence diminishing reproducibility. We have developed a 3D-printable microplate system to contain the entire ExM workflow within each well, enabling in situ image acquisition and eliminating the need for direct handling of the hydrogels. The preservation of the gel geometry and orientation of the microplate wells enables convenient tracking of gel expansion, pre- and post-ExM image acquisition, and distortion mapping of every cell or region of interest. We demonstrate the utility of this approach with both single-color and multiplexed ExM of cultured HeLa cells and dissected pupal Drosophila melanogaster wing tissue to reveal distortion-prone structures ranging from sub-cellular organelles to micron-scale tissue regions. [Display omitted] •3D-printed microplate system designed for in situ ExM•Plate-based ExM avoided handling and preserved gel geometry during expansion•Pre- and post-ExM imaging within each well allowed visualization of distortions•Distortions observed in sub-cellular areas in HeLa cells and across fly wing tissue Expansion microscopy is an analytical protocol that allows the physical magnification of biological structures (cells, tissues, and organisms) with swellable hydrogels. Seehra et al. report the development of an array-based approach to containing gel expansion and visualization of spatial distortions intrinsic to magnified cell and tissue ultrastructure.
doi_str_mv 10.1016/j.xcrp.2023.101719
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_xcrp_2023_101719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S266638642300560X</els_id><sourcerecordid>S266638642300560X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-f6c2cae219cb15fd98a2b7d7f5e3b2c390698e004584a05d6417cfe781466aca3</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOOb-gE_9A51JmqYt-CJD52Dgiz6HNLnZMro0JGGs_97W-uCTT_dwuOdw-BB6JHhNMOFPp_VVBb-mmBaTUZHmBi0o5zwvas5u_-h7tIrxhDGmJSFVjRfIbKE_QwpD7gNECBfrDhlcvXTR9i47WxX6qHo_zNJ3MkHMwMm2g-xoD8fcWA2dTUPmpBtf5ehrG1Mf0k-B9H6sfEB3RnYRVr93ib7eXj837_n-Y7vbvOxzVTCWcsMVVRIoaVRLSqObWtK20pUpoWipKhrMmxowZmXNJC41Z6RSBqqaMM6lksUS0bl3mh0DGOGDPcswCILFBEucxARLTLDEDGsMPc8hGJddLAQRlQWnQNsAKgnd2__i35O1dlI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Geometry-preserving expansion microscopy microplates enable high-fidelity nanoscale distortion mapping</title><source>Elsevier ScienceDirect Journals</source><creator>Seehra, Rajpinder S. ; Warrington, Samantha J. ; Allouis, Benjamin H.K. ; Sheard, Thomas M.D. ; Spencer, Michael E. ; Shakespeare, Tayla ; Cadby, Ashley ; Bose, Daniel ; Strutt, David ; Jayasinghe, Izzy</creator><creatorcontrib>Seehra, Rajpinder S. ; Warrington, Samantha J. ; Allouis, Benjamin H.K. ; Sheard, Thomas M.D. ; Spencer, Michael E. ; Shakespeare, Tayla ; Cadby, Ashley ; Bose, Daniel ; Strutt, David ; Jayasinghe, Izzy</creatorcontrib><description>Expansion microscopy (ExM) is a versatile super-resolution microscopy pipeline, leveraging nanoscale biomolecular crosslinking and osmotically driven swelling of hydrogels. Currently, ExM is a laborious and skill-intensive technique, involving manual handling of the hydrogels that can compromise the integrity of the gels and capacity to track gel isotropy, hence diminishing reproducibility. We have developed a 3D-printable microplate system to contain the entire ExM workflow within each well, enabling in situ image acquisition and eliminating the need for direct handling of the hydrogels. The preservation of the gel geometry and orientation of the microplate wells enables convenient tracking of gel expansion, pre- and post-ExM image acquisition, and distortion mapping of every cell or region of interest. We demonstrate the utility of this approach with both single-color and multiplexed ExM of cultured HeLa cells and dissected pupal Drosophila melanogaster wing tissue to reveal distortion-prone structures ranging from sub-cellular organelles to micron-scale tissue regions. [Display omitted] •3D-printed microplate system designed for in situ ExM•Plate-based ExM avoided handling and preserved gel geometry during expansion•Pre- and post-ExM imaging within each well allowed visualization of distortions•Distortions observed in sub-cellular areas in HeLa cells and across fly wing tissue Expansion microscopy is an analytical protocol that allows the physical magnification of biological structures (cells, tissues, and organisms) with swellable hydrogels. Seehra et al. report the development of an array-based approach to containing gel expansion and visualization of spatial distortions intrinsic to magnified cell and tissue ultrastructure.</description><identifier>ISSN: 2666-3864</identifier><identifier>EISSN: 2666-3864</identifier><identifier>DOI: 10.1016/j.xcrp.2023.101719</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>3D printing ; correlative microscopy ; distortion mapping ; Drosophila melanogaster ; expansion microscopy ; HeLa cells ; multiplexed fluorescence imaging ; super-resolution</subject><ispartof>Cell reports physical science, 2023-12, Vol.4 (12), p.101719, Article 101719</ispartof><rights>2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-f6c2cae219cb15fd98a2b7d7f5e3b2c390698e004584a05d6417cfe781466aca3</citedby><cites>FETCH-LOGICAL-c344t-f6c2cae219cb15fd98a2b7d7f5e3b2c390698e004584a05d6417cfe781466aca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S266638642300560X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3535,27903,27904,45759</link.rule.ids></links><search><creatorcontrib>Seehra, Rajpinder S.</creatorcontrib><creatorcontrib>Warrington, Samantha J.</creatorcontrib><creatorcontrib>Allouis, Benjamin H.K.</creatorcontrib><creatorcontrib>Sheard, Thomas M.D.</creatorcontrib><creatorcontrib>Spencer, Michael E.</creatorcontrib><creatorcontrib>Shakespeare, Tayla</creatorcontrib><creatorcontrib>Cadby, Ashley</creatorcontrib><creatorcontrib>Bose, Daniel</creatorcontrib><creatorcontrib>Strutt, David</creatorcontrib><creatorcontrib>Jayasinghe, Izzy</creatorcontrib><title>Geometry-preserving expansion microscopy microplates enable high-fidelity nanoscale distortion mapping</title><title>Cell reports physical science</title><description>Expansion microscopy (ExM) is a versatile super-resolution microscopy pipeline, leveraging nanoscale biomolecular crosslinking and osmotically driven swelling of hydrogels. Currently, ExM is a laborious and skill-intensive technique, involving manual handling of the hydrogels that can compromise the integrity of the gels and capacity to track gel isotropy, hence diminishing reproducibility. We have developed a 3D-printable microplate system to contain the entire ExM workflow within each well, enabling in situ image acquisition and eliminating the need for direct handling of the hydrogels. The preservation of the gel geometry and orientation of the microplate wells enables convenient tracking of gel expansion, pre- and post-ExM image acquisition, and distortion mapping of every cell or region of interest. We demonstrate the utility of this approach with both single-color and multiplexed ExM of cultured HeLa cells and dissected pupal Drosophila melanogaster wing tissue to reveal distortion-prone structures ranging from sub-cellular organelles to micron-scale tissue regions. [Display omitted] •3D-printed microplate system designed for in situ ExM•Plate-based ExM avoided handling and preserved gel geometry during expansion•Pre- and post-ExM imaging within each well allowed visualization of distortions•Distortions observed in sub-cellular areas in HeLa cells and across fly wing tissue Expansion microscopy is an analytical protocol that allows the physical magnification of biological structures (cells, tissues, and organisms) with swellable hydrogels. Seehra et al. report the development of an array-based approach to containing gel expansion and visualization of spatial distortions intrinsic to magnified cell and tissue ultrastructure.</description><subject>3D printing</subject><subject>correlative microscopy</subject><subject>distortion mapping</subject><subject>Drosophila melanogaster</subject><subject>expansion microscopy</subject><subject>HeLa cells</subject><subject>multiplexed fluorescence imaging</subject><subject>super-resolution</subject><issn>2666-3864</issn><issn>2666-3864</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAUhYMoOOb-gE_9A51JmqYt-CJD52Dgiz6HNLnZMro0JGGs_97W-uCTT_dwuOdw-BB6JHhNMOFPp_VVBb-mmBaTUZHmBi0o5zwvas5u_-h7tIrxhDGmJSFVjRfIbKE_QwpD7gNECBfrDhlcvXTR9i47WxX6qHo_zNJ3MkHMwMm2g-xoD8fcWA2dTUPmpBtf5ehrG1Mf0k-B9H6sfEB3RnYRVr93ib7eXj837_n-Y7vbvOxzVTCWcsMVVRIoaVRLSqObWtK20pUpoWipKhrMmxowZmXNJC41Z6RSBqqaMM6lksUS0bl3mh0DGOGDPcswCILFBEucxARLTLDEDGsMPc8hGJddLAQRlQWnQNsAKgnd2__i35O1dlI</recordid><startdate>20231220</startdate><enddate>20231220</enddate><creator>Seehra, Rajpinder S.</creator><creator>Warrington, Samantha J.</creator><creator>Allouis, Benjamin H.K.</creator><creator>Sheard, Thomas M.D.</creator><creator>Spencer, Michael E.</creator><creator>Shakespeare, Tayla</creator><creator>Cadby, Ashley</creator><creator>Bose, Daniel</creator><creator>Strutt, David</creator><creator>Jayasinghe, Izzy</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231220</creationdate><title>Geometry-preserving expansion microscopy microplates enable high-fidelity nanoscale distortion mapping</title><author>Seehra, Rajpinder S. ; Warrington, Samantha J. ; Allouis, Benjamin H.K. ; Sheard, Thomas M.D. ; Spencer, Michael E. ; Shakespeare, Tayla ; Cadby, Ashley ; Bose, Daniel ; Strutt, David ; Jayasinghe, Izzy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-f6c2cae219cb15fd98a2b7d7f5e3b2c390698e004584a05d6417cfe781466aca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D printing</topic><topic>correlative microscopy</topic><topic>distortion mapping</topic><topic>Drosophila melanogaster</topic><topic>expansion microscopy</topic><topic>HeLa cells</topic><topic>multiplexed fluorescence imaging</topic><topic>super-resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seehra, Rajpinder S.</creatorcontrib><creatorcontrib>Warrington, Samantha J.</creatorcontrib><creatorcontrib>Allouis, Benjamin H.K.</creatorcontrib><creatorcontrib>Sheard, Thomas M.D.</creatorcontrib><creatorcontrib>Spencer, Michael E.</creatorcontrib><creatorcontrib>Shakespeare, Tayla</creatorcontrib><creatorcontrib>Cadby, Ashley</creatorcontrib><creatorcontrib>Bose, Daniel</creatorcontrib><creatorcontrib>Strutt, David</creatorcontrib><creatorcontrib>Jayasinghe, Izzy</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Cell reports physical science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seehra, Rajpinder S.</au><au>Warrington, Samantha J.</au><au>Allouis, Benjamin H.K.</au><au>Sheard, Thomas M.D.</au><au>Spencer, Michael E.</au><au>Shakespeare, Tayla</au><au>Cadby, Ashley</au><au>Bose, Daniel</au><au>Strutt, David</au><au>Jayasinghe, Izzy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometry-preserving expansion microscopy microplates enable high-fidelity nanoscale distortion mapping</atitle><jtitle>Cell reports physical science</jtitle><date>2023-12-20</date><risdate>2023</risdate><volume>4</volume><issue>12</issue><spage>101719</spage><pages>101719-</pages><artnum>101719</artnum><issn>2666-3864</issn><eissn>2666-3864</eissn><abstract>Expansion microscopy (ExM) is a versatile super-resolution microscopy pipeline, leveraging nanoscale biomolecular crosslinking and osmotically driven swelling of hydrogels. Currently, ExM is a laborious and skill-intensive technique, involving manual handling of the hydrogels that can compromise the integrity of the gels and capacity to track gel isotropy, hence diminishing reproducibility. We have developed a 3D-printable microplate system to contain the entire ExM workflow within each well, enabling in situ image acquisition and eliminating the need for direct handling of the hydrogels. The preservation of the gel geometry and orientation of the microplate wells enables convenient tracking of gel expansion, pre- and post-ExM image acquisition, and distortion mapping of every cell or region of interest. We demonstrate the utility of this approach with both single-color and multiplexed ExM of cultured HeLa cells and dissected pupal Drosophila melanogaster wing tissue to reveal distortion-prone structures ranging from sub-cellular organelles to micron-scale tissue regions. [Display omitted] •3D-printed microplate system designed for in situ ExM•Plate-based ExM avoided handling and preserved gel geometry during expansion•Pre- and post-ExM imaging within each well allowed visualization of distortions•Distortions observed in sub-cellular areas in HeLa cells and across fly wing tissue Expansion microscopy is an analytical protocol that allows the physical magnification of biological structures (cells, tissues, and organisms) with swellable hydrogels. Seehra et al. report the development of an array-based approach to containing gel expansion and visualization of spatial distortions intrinsic to magnified cell and tissue ultrastructure.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.xcrp.2023.101719</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-3864
ispartof Cell reports physical science, 2023-12, Vol.4 (12), p.101719, Article 101719
issn 2666-3864
2666-3864
language eng
recordid cdi_crossref_primary_10_1016_j_xcrp_2023_101719
source Elsevier ScienceDirect Journals
subjects 3D printing
correlative microscopy
distortion mapping
Drosophila melanogaster
expansion microscopy
HeLa cells
multiplexed fluorescence imaging
super-resolution
title Geometry-preserving expansion microscopy microplates enable high-fidelity nanoscale distortion mapping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A24%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometry-preserving%20expansion%20microscopy%20microplates%20enable%20high-fidelity%20nanoscale%20distortion%20mapping&rft.jtitle=Cell%20reports%20physical%20science&rft.au=Seehra,%20Rajpinder%20S.&rft.date=2023-12-20&rft.volume=4&rft.issue=12&rft.spage=101719&rft.pages=101719-&rft.artnum=101719&rft.issn=2666-3864&rft.eissn=2666-3864&rft_id=info:doi/10.1016/j.xcrp.2023.101719&rft_dat=%3Celsevier_cross%3ES266638642300560X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-f6c2cae219cb15fd98a2b7d7f5e3b2c390698e004584a05d6417cfe781466aca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true