Loading…
Targeting Effect of Betulinic Acid Liposome Modified by Hyaluronic Acid on Hepatoma Cells In Vitro
Betulinic acid (BA) is a natural pentacyclic triterpenoid with broad-spectrum anticancer activity, which has great development potential as an anti-cancer drug. In this study, a novel hyaluronic acid (HA)-modified BA liposome (BA-L) was developed for use in targeted liver cancer therapy. The size, p...
Saved in:
Published in: | Journal of pharmaceutical sciences 2022-11, Vol.111 (11), p.3047-3053 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Betulinic acid (BA) is a natural pentacyclic triterpenoid with broad-spectrum anticancer activity, which has great development potential as an anti-cancer drug. In this study, a novel hyaluronic acid (HA)-modified BA liposome (BA-L) was developed for use in targeted liver cancer therapy. The size, polymer dispersity index (PDI), zeta potential, and entrapment efficiency were measured. Cell viability, cell migration and clonogenicity, cellular uptake, immunohistochemistry of CD44, and protein expression of ROCK1/IP3/RAS were also investigated. BA, BA-L, and HA-BA-L had no inhibitory effect on the activity of LO2 normal hepatocytes, but they inhibited the proliferation of HepG2 and SMMC-7721 cells in a dose- and time-dependent manner, with HA-BA-L exhibiting the most prominent inhibitory effect. Compared with the BA-L group, the expression of CD44 in HepG2 cells in the HA-BA-L group was decreased. The results of WB showed that BA, BA-L, and HA-BA-L downregulated the expression of ROCK1, IP3, and RAS in HepG2 cells, and the expression level in the HA-BA-L group was significantly decreased. The easily prepared HA-BA-L was demonstrated to be an excellent CD44-mediated intracellular delivery system capable of targeting effects. Further mechanistic research revealed that the inhibition of HA-BA-L on HepG2 cells may be mediated by blocking the ROCK1/IP3/RAS signaling pathways. |
---|---|
ISSN: | 0022-3549 1520-6017 |
DOI: | 10.1016/j.xphs.2022.06.015 |