Loading…

Adaptive Bayesian filter with data-driven sparse state space model for seismic response estimation

The present work proposes a seismic response estimation framework for post-earthquake structural condition assessment via acceleration measurements. An augmented sparse state space model is first derived to represent the underlying governing equations of the system of interest with hysteresis nonlin...

Full description

Saved in:
Bibliographic Details
Published in:Mechanical systems and signal processing 2024-02, Vol.208, p.111048, Article 111048
Main Authors: Kitahara, Masaru, Kakiuchi, Yuki, Yang, Yaohua, Nagayama, Tomonori
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c253t-52c896a4506ca61fe48cc1f3ab975579a48ff03365159606334b9458dc67a4fb3
container_end_page
container_issue
container_start_page 111048
container_title Mechanical systems and signal processing
container_volume 208
creator Kitahara, Masaru
Kakiuchi, Yuki
Yang, Yaohua
Nagayama, Tomonori
description The present work proposes a seismic response estimation framework for post-earthquake structural condition assessment via acceleration measurements. An augmented sparse state space model is first derived to represent the underlying governing equations of the system of interest with hysteresis nonlinearity. A Bayesian filter is then utilized to provide the displacement estimate under an earthquake excitation by fusing the identified sparse state space model with the measured system acceleration. To avoid subjective assumptions on the process and observation noises in the Bayesian filter, a double-loop process is proposed, where the inner loop is an online Bayesian filtering by the unscented Kalman filter with Robbins-Monro algorithm, while the outer loop is an offline Bayesian updating by the transitional Markov chain Monte Carlo method. The feasibility of the framework is demonstrated on a simple illustrative example and a followed engineering application to the state estimation of a bridge pier finite element model. The results indicate the capability of the framework to properly infer the system displacement, including its residual components.
doi_str_mv 10.1016/j.ymssp.2023.111048
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ymssp_2023_111048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327023009561</els_id><sourcerecordid>S0888327023009561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-52c896a4506ca61fe48cc1f3ab975579a48ff03365159606334b9458dc67a4fb3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKu_wEv-wK7J5mOzBw-1aBUKXvQcstkJpnQ_yIRK_71b69nTMMz7DC8PIfeclZxx_bArjz3iVFasEiXnnElzQRacNbrgFdeXZMGMMYWoanZNbhB3jLFGMr0g7apzU44HoE_uCBjdQEPcZ0j0O-Yv2rnsii7N94Hi5BICxewynBYPtB872NMwJooQsY-eJsBpHOYYYI69y3EcbslVcHuEu7-5JJ8vzx_r12L7vnlbr7aFr5TIhaq8abSTimnvNA8gjfc8CNc2tVJ146QJgQmhFVeNZloI2TZSmc7r2snQiiUR578-jYgJgp3SXCEdLWf2pMnu7K8me9Jkz5pm6vFMwVztECFZ9BEGD11M4LPtxvgv_wP9nXNU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adaptive Bayesian filter with data-driven sparse state space model for seismic response estimation</title><source>Elsevier</source><creator>Kitahara, Masaru ; Kakiuchi, Yuki ; Yang, Yaohua ; Nagayama, Tomonori</creator><creatorcontrib>Kitahara, Masaru ; Kakiuchi, Yuki ; Yang, Yaohua ; Nagayama, Tomonori</creatorcontrib><description>The present work proposes a seismic response estimation framework for post-earthquake structural condition assessment via acceleration measurements. An augmented sparse state space model is first derived to represent the underlying governing equations of the system of interest with hysteresis nonlinearity. A Bayesian filter is then utilized to provide the displacement estimate under an earthquake excitation by fusing the identified sparse state space model with the measured system acceleration. To avoid subjective assumptions on the process and observation noises in the Bayesian filter, a double-loop process is proposed, where the inner loop is an online Bayesian filtering by the unscented Kalman filter with Robbins-Monro algorithm, while the outer loop is an offline Bayesian updating by the transitional Markov chain Monte Carlo method. The feasibility of the framework is demonstrated on a simple illustrative example and a followed engineering application to the state estimation of a bridge pier finite element model. The results indicate the capability of the framework to properly infer the system displacement, including its residual components.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2023.111048</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bayesian filtering ; Displacement estimation ; Hysteresis ; Seismic response ; Sparse regularization ; Structural system identification</subject><ispartof>Mechanical systems and signal processing, 2024-02, Vol.208, p.111048, Article 111048</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c253t-52c896a4506ca61fe48cc1f3ab975579a48ff03365159606334b9458dc67a4fb3</cites><orcidid>0000-0001-9877-9574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kitahara, Masaru</creatorcontrib><creatorcontrib>Kakiuchi, Yuki</creatorcontrib><creatorcontrib>Yang, Yaohua</creatorcontrib><creatorcontrib>Nagayama, Tomonori</creatorcontrib><title>Adaptive Bayesian filter with data-driven sparse state space model for seismic response estimation</title><title>Mechanical systems and signal processing</title><description>The present work proposes a seismic response estimation framework for post-earthquake structural condition assessment via acceleration measurements. An augmented sparse state space model is first derived to represent the underlying governing equations of the system of interest with hysteresis nonlinearity. A Bayesian filter is then utilized to provide the displacement estimate under an earthquake excitation by fusing the identified sparse state space model with the measured system acceleration. To avoid subjective assumptions on the process and observation noises in the Bayesian filter, a double-loop process is proposed, where the inner loop is an online Bayesian filtering by the unscented Kalman filter with Robbins-Monro algorithm, while the outer loop is an offline Bayesian updating by the transitional Markov chain Monte Carlo method. The feasibility of the framework is demonstrated on a simple illustrative example and a followed engineering application to the state estimation of a bridge pier finite element model. The results indicate the capability of the framework to properly infer the system displacement, including its residual components.</description><subject>Bayesian filtering</subject><subject>Displacement estimation</subject><subject>Hysteresis</subject><subject>Seismic response</subject><subject>Sparse regularization</subject><subject>Structural system identification</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKu_wEv-wK7J5mOzBw-1aBUKXvQcstkJpnQ_yIRK_71b69nTMMz7DC8PIfeclZxx_bArjz3iVFasEiXnnElzQRacNbrgFdeXZMGMMYWoanZNbhB3jLFGMr0g7apzU44HoE_uCBjdQEPcZ0j0O-Yv2rnsii7N94Hi5BICxewynBYPtB872NMwJooQsY-eJsBpHOYYYI69y3EcbslVcHuEu7-5JJ8vzx_r12L7vnlbr7aFr5TIhaq8abSTimnvNA8gjfc8CNc2tVJ146QJgQmhFVeNZloI2TZSmc7r2snQiiUR578-jYgJgp3SXCEdLWf2pMnu7K8me9Jkz5pm6vFMwVztECFZ9BEGD11M4LPtxvgv_wP9nXNU</recordid><startdate>20240215</startdate><enddate>20240215</enddate><creator>Kitahara, Masaru</creator><creator>Kakiuchi, Yuki</creator><creator>Yang, Yaohua</creator><creator>Nagayama, Tomonori</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9877-9574</orcidid></search><sort><creationdate>20240215</creationdate><title>Adaptive Bayesian filter with data-driven sparse state space model for seismic response estimation</title><author>Kitahara, Masaru ; Kakiuchi, Yuki ; Yang, Yaohua ; Nagayama, Tomonori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-52c896a4506ca61fe48cc1f3ab975579a48ff03365159606334b9458dc67a4fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayesian filtering</topic><topic>Displacement estimation</topic><topic>Hysteresis</topic><topic>Seismic response</topic><topic>Sparse regularization</topic><topic>Structural system identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kitahara, Masaru</creatorcontrib><creatorcontrib>Kakiuchi, Yuki</creatorcontrib><creatorcontrib>Yang, Yaohua</creatorcontrib><creatorcontrib>Nagayama, Tomonori</creatorcontrib><collection>CrossRef</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kitahara, Masaru</au><au>Kakiuchi, Yuki</au><au>Yang, Yaohua</au><au>Nagayama, Tomonori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Bayesian filter with data-driven sparse state space model for seismic response estimation</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2024-02-15</date><risdate>2024</risdate><volume>208</volume><spage>111048</spage><pages>111048-</pages><artnum>111048</artnum><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>The present work proposes a seismic response estimation framework for post-earthquake structural condition assessment via acceleration measurements. An augmented sparse state space model is first derived to represent the underlying governing equations of the system of interest with hysteresis nonlinearity. A Bayesian filter is then utilized to provide the displacement estimate under an earthquake excitation by fusing the identified sparse state space model with the measured system acceleration. To avoid subjective assumptions on the process and observation noises in the Bayesian filter, a double-loop process is proposed, where the inner loop is an online Bayesian filtering by the unscented Kalman filter with Robbins-Monro algorithm, while the outer loop is an offline Bayesian updating by the transitional Markov chain Monte Carlo method. The feasibility of the framework is demonstrated on a simple illustrative example and a followed engineering application to the state estimation of a bridge pier finite element model. The results indicate the capability of the framework to properly infer the system displacement, including its residual components.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2023.111048</doi><orcidid>https://orcid.org/0000-0001-9877-9574</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-3270
ispartof Mechanical systems and signal processing, 2024-02, Vol.208, p.111048, Article 111048
issn 0888-3270
1096-1216
language eng
recordid cdi_crossref_primary_10_1016_j_ymssp_2023_111048
source Elsevier
subjects Bayesian filtering
Displacement estimation
Hysteresis
Seismic response
Sparse regularization
Structural system identification
title Adaptive Bayesian filter with data-driven sparse state space model for seismic response estimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A10%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Bayesian%20filter%20with%20data-driven%20sparse%20state%20space%20model%20for%20seismic%20response%20estimation&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Kitahara,%20Masaru&rft.date=2024-02-15&rft.volume=208&rft.spage=111048&rft.pages=111048-&rft.artnum=111048&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2023.111048&rft_dat=%3Celsevier_cross%3ES0888327023009561%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c253t-52c896a4506ca61fe48cc1f3ab975579a48ff03365159606334b9458dc67a4fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true