Loading…

Deep learning and structural health monitoring: Temporal Fusion Transformers for anomaly detection in masonry towers

Detecting anomalies in the vibrational features of age-old buildings is crucial within the Structural Health Monitoring (SHM) framework. The SHM techniques can leverage information from onsite measurements and environmental sources to identify the dynamic properties (such as the frequencies) of the...

Full description

Saved in:
Bibliographic Details
Published in:Mechanical systems and signal processing 2024-06, Vol.215, p.111382, Article 111382
Main Authors: Falchi, Fabrizio, Girardi, Maria, Gurioli, Gianmarco, Messina, Nicola, Padovani, Cristina, Pellegrini, Daniele
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c298t-5f61d2ebb0b2cfe5d7102a536de994aa6dae1f8a0ce1902e9b675547468ec0a43
container_end_page
container_issue
container_start_page 111382
container_title Mechanical systems and signal processing
container_volume 215
creator Falchi, Fabrizio
Girardi, Maria
Gurioli, Gianmarco
Messina, Nicola
Padovani, Cristina
Pellegrini, Daniele
description Detecting anomalies in the vibrational features of age-old buildings is crucial within the Structural Health Monitoring (SHM) framework. The SHM techniques can leverage information from onsite measurements and environmental sources to identify the dynamic properties (such as the frequencies) of the monitored structure, searching for possible deviations or unusual behavior over time. The Temporal Fusion Transformer (TFT) network is a deep learning algorithm designed for multi-horizon time series forecasting and initially tested on electricity, traffic, retail, and volatility problems. In this paper, it is applied to SHM. More precisely, the TFT approach is adopted to investigate the behavior of the Guinigi Tower located in Lucca (Italy) and subjected to a long-term dynamic monitoring campaign. The TFT network is trained on the tower’s experimental frequencies enriched with other environmental parameters. The transformer is then employed to predict the vibrational features (natural frequencies, root mean squares values of the velocity time series) and detect possible anomalies or unexpected events by inspecting how much the actual frequencies deviate from the predicted ones. The TFT technique is used to detect the effects of the Viareggio earthquake that occurred on 6 February 2022, and the structural damage induced by three simulated damage scenarios.
doi_str_mv 10.1016/j.ymssp.2024.111382
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ymssp_2024_111382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327024002802</els_id><sourcerecordid>S0888327024002802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-5f61d2ebb0b2cfe5d7102a536de994aa6dae1f8a0ce1902e9b675547468ec0a43</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAja-QMrYSZwEiQUqFJAqsSlry3Em1FViR7YLyu1JKGtWb_F-NPMRcstgxYCJu8Nq7EMYVhx4tmKMpSU_IwsGlUgYZ-KcLKAsyyTlBVySqxAOAFBlIBYkPiEOtEPlrbGfVNmGhuiPOh696ugeVRf3tHfWROenwD3dYT-42dscg3GW7ryyoXW-Rx_opNOE61U30gYj6jhHjKW9Cs76kUb3PeWuyUWruoA3f7okH5vn3fo12b6_vK0ft4nmVRmTvBWs4VjXUHPdYt4UDLjKU9FgVWVKiUYha0sFGlkFHKtaFHmeFZkoUYPK0iVJT7vauxA8tnLwpld-lAzkDE4e5C84OYOTJ3BT6-HUwum0L4NeBm3QamyMnz6SjTP_9n8AB_Z71g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep learning and structural health monitoring: Temporal Fusion Transformers for anomaly detection in masonry towers</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Falchi, Fabrizio ; Girardi, Maria ; Gurioli, Gianmarco ; Messina, Nicola ; Padovani, Cristina ; Pellegrini, Daniele</creator><creatorcontrib>Falchi, Fabrizio ; Girardi, Maria ; Gurioli, Gianmarco ; Messina, Nicola ; Padovani, Cristina ; Pellegrini, Daniele</creatorcontrib><description>Detecting anomalies in the vibrational features of age-old buildings is crucial within the Structural Health Monitoring (SHM) framework. The SHM techniques can leverage information from onsite measurements and environmental sources to identify the dynamic properties (such as the frequencies) of the monitored structure, searching for possible deviations or unusual behavior over time. The Temporal Fusion Transformer (TFT) network is a deep learning algorithm designed for multi-horizon time series forecasting and initially tested on electricity, traffic, retail, and volatility problems. In this paper, it is applied to SHM. More precisely, the TFT approach is adopted to investigate the behavior of the Guinigi Tower located in Lucca (Italy) and subjected to a long-term dynamic monitoring campaign. The TFT network is trained on the tower’s experimental frequencies enriched with other environmental parameters. The transformer is then employed to predict the vibrational features (natural frequencies, root mean squares values of the velocity time series) and detect possible anomalies or unexpected events by inspecting how much the actual frequencies deviate from the predicted ones. The TFT technique is used to detect the effects of the Viareggio earthquake that occurred on 6 February 2022, and the structural damage induced by three simulated damage scenarios.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2024.111382</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Damage detection ; Deep learning ; Long-term dynamic monitoring ; Masonry towers ; Structural health monitoring</subject><ispartof>Mechanical systems and signal processing, 2024-06, Vol.215, p.111382, Article 111382</ispartof><rights>2024 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c298t-5f61d2ebb0b2cfe5d7102a536de994aa6dae1f8a0ce1902e9b675547468ec0a43</cites><orcidid>0000-0003-3011-2487 ; 0000-0002-3416-771X ; 0000-0001-6258-5313 ; 0000-0002-7358-5607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Falchi, Fabrizio</creatorcontrib><creatorcontrib>Girardi, Maria</creatorcontrib><creatorcontrib>Gurioli, Gianmarco</creatorcontrib><creatorcontrib>Messina, Nicola</creatorcontrib><creatorcontrib>Padovani, Cristina</creatorcontrib><creatorcontrib>Pellegrini, Daniele</creatorcontrib><title>Deep learning and structural health monitoring: Temporal Fusion Transformers for anomaly detection in masonry towers</title><title>Mechanical systems and signal processing</title><description>Detecting anomalies in the vibrational features of age-old buildings is crucial within the Structural Health Monitoring (SHM) framework. The SHM techniques can leverage information from onsite measurements and environmental sources to identify the dynamic properties (such as the frequencies) of the monitored structure, searching for possible deviations or unusual behavior over time. The Temporal Fusion Transformer (TFT) network is a deep learning algorithm designed for multi-horizon time series forecasting and initially tested on electricity, traffic, retail, and volatility problems. In this paper, it is applied to SHM. More precisely, the TFT approach is adopted to investigate the behavior of the Guinigi Tower located in Lucca (Italy) and subjected to a long-term dynamic monitoring campaign. The TFT network is trained on the tower’s experimental frequencies enriched with other environmental parameters. The transformer is then employed to predict the vibrational features (natural frequencies, root mean squares values of the velocity time series) and detect possible anomalies or unexpected events by inspecting how much the actual frequencies deviate from the predicted ones. The TFT technique is used to detect the effects of the Viareggio earthquake that occurred on 6 February 2022, and the structural damage induced by three simulated damage scenarios.</description><subject>Damage detection</subject><subject>Deep learning</subject><subject>Long-term dynamic monitoring</subject><subject>Masonry towers</subject><subject>Structural health monitoring</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAja-QMrYSZwEiQUqFJAqsSlry3Em1FViR7YLyu1JKGtWb_F-NPMRcstgxYCJu8Nq7EMYVhx4tmKMpSU_IwsGlUgYZ-KcLKAsyyTlBVySqxAOAFBlIBYkPiEOtEPlrbGfVNmGhuiPOh696ugeVRf3tHfWROenwD3dYT-42dscg3GW7ryyoXW-Rx_opNOE61U30gYj6jhHjKW9Cs76kUb3PeWuyUWruoA3f7okH5vn3fo12b6_vK0ft4nmVRmTvBWs4VjXUHPdYt4UDLjKU9FgVWVKiUYha0sFGlkFHKtaFHmeFZkoUYPK0iVJT7vauxA8tnLwpld-lAzkDE4e5C84OYOTJ3BT6-HUwum0L4NeBm3QamyMnz6SjTP_9n8AB_Z71g</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Falchi, Fabrizio</creator><creator>Girardi, Maria</creator><creator>Gurioli, Gianmarco</creator><creator>Messina, Nicola</creator><creator>Padovani, Cristina</creator><creator>Pellegrini, Daniele</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3011-2487</orcidid><orcidid>https://orcid.org/0000-0002-3416-771X</orcidid><orcidid>https://orcid.org/0000-0001-6258-5313</orcidid><orcidid>https://orcid.org/0000-0002-7358-5607</orcidid></search><sort><creationdate>20240601</creationdate><title>Deep learning and structural health monitoring: Temporal Fusion Transformers for anomaly detection in masonry towers</title><author>Falchi, Fabrizio ; Girardi, Maria ; Gurioli, Gianmarco ; Messina, Nicola ; Padovani, Cristina ; Pellegrini, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-5f61d2ebb0b2cfe5d7102a536de994aa6dae1f8a0ce1902e9b675547468ec0a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Damage detection</topic><topic>Deep learning</topic><topic>Long-term dynamic monitoring</topic><topic>Masonry towers</topic><topic>Structural health monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falchi, Fabrizio</creatorcontrib><creatorcontrib>Girardi, Maria</creatorcontrib><creatorcontrib>Gurioli, Gianmarco</creatorcontrib><creatorcontrib>Messina, Nicola</creatorcontrib><creatorcontrib>Padovani, Cristina</creatorcontrib><creatorcontrib>Pellegrini, Daniele</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falchi, Fabrizio</au><au>Girardi, Maria</au><au>Gurioli, Gianmarco</au><au>Messina, Nicola</au><au>Padovani, Cristina</au><au>Pellegrini, Daniele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning and structural health monitoring: Temporal Fusion Transformers for anomaly detection in masonry towers</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>215</volume><spage>111382</spage><pages>111382-</pages><artnum>111382</artnum><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>Detecting anomalies in the vibrational features of age-old buildings is crucial within the Structural Health Monitoring (SHM) framework. The SHM techniques can leverage information from onsite measurements and environmental sources to identify the dynamic properties (such as the frequencies) of the monitored structure, searching for possible deviations or unusual behavior over time. The Temporal Fusion Transformer (TFT) network is a deep learning algorithm designed for multi-horizon time series forecasting and initially tested on electricity, traffic, retail, and volatility problems. In this paper, it is applied to SHM. More precisely, the TFT approach is adopted to investigate the behavior of the Guinigi Tower located in Lucca (Italy) and subjected to a long-term dynamic monitoring campaign. The TFT network is trained on the tower’s experimental frequencies enriched with other environmental parameters. The transformer is then employed to predict the vibrational features (natural frequencies, root mean squares values of the velocity time series) and detect possible anomalies or unexpected events by inspecting how much the actual frequencies deviate from the predicted ones. The TFT technique is used to detect the effects of the Viareggio earthquake that occurred on 6 February 2022, and the structural damage induced by three simulated damage scenarios.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2024.111382</doi><orcidid>https://orcid.org/0000-0003-3011-2487</orcidid><orcidid>https://orcid.org/0000-0002-3416-771X</orcidid><orcidid>https://orcid.org/0000-0001-6258-5313</orcidid><orcidid>https://orcid.org/0000-0002-7358-5607</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-3270
ispartof Mechanical systems and signal processing, 2024-06, Vol.215, p.111382, Article 111382
issn 0888-3270
1096-1216
language eng
recordid cdi_crossref_primary_10_1016_j_ymssp_2024_111382
source ScienceDirect Freedom Collection 2022-2024
subjects Damage detection
Deep learning
Long-term dynamic monitoring
Masonry towers
Structural health monitoring
title Deep learning and structural health monitoring: Temporal Fusion Transformers for anomaly detection in masonry towers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20and%20structural%20health%20monitoring:%20Temporal%20Fusion%20Transformers%20for%20anomaly%20detection%20in%20masonry%20towers&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Falchi,%20Fabrizio&rft.date=2024-06-01&rft.volume=215&rft.spage=111382&rft.pages=111382-&rft.artnum=111382&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2024.111382&rft_dat=%3Celsevier_cross%3ES0888327024002802%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c298t-5f61d2ebb0b2cfe5d7102a536de994aa6dae1f8a0ce1902e9b675547468ec0a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true