Loading…
Deep learning and structural health monitoring: Temporal Fusion Transformers for anomaly detection in masonry towers
Detecting anomalies in the vibrational features of age-old buildings is crucial within the Structural Health Monitoring (SHM) framework. The SHM techniques can leverage information from onsite measurements and environmental sources to identify the dynamic properties (such as the frequencies) of the...
Saved in:
Published in: | Mechanical systems and signal processing 2024-06, Vol.215, p.111382, Article 111382 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c298t-5f61d2ebb0b2cfe5d7102a536de994aa6dae1f8a0ce1902e9b675547468ec0a43 |
container_end_page | |
container_issue | |
container_start_page | 111382 |
container_title | Mechanical systems and signal processing |
container_volume | 215 |
creator | Falchi, Fabrizio Girardi, Maria Gurioli, Gianmarco Messina, Nicola Padovani, Cristina Pellegrini, Daniele |
description | Detecting anomalies in the vibrational features of age-old buildings is crucial within the Structural Health Monitoring (SHM) framework. The SHM techniques can leverage information from onsite measurements and environmental sources to identify the dynamic properties (such as the frequencies) of the monitored structure, searching for possible deviations or unusual behavior over time. The Temporal Fusion Transformer (TFT) network is a deep learning algorithm designed for multi-horizon time series forecasting and initially tested on electricity, traffic, retail, and volatility problems. In this paper, it is applied to SHM. More precisely, the TFT approach is adopted to investigate the behavior of the Guinigi Tower located in Lucca (Italy) and subjected to a long-term dynamic monitoring campaign. The TFT network is trained on the tower’s experimental frequencies enriched with other environmental parameters. The transformer is then employed to predict the vibrational features (natural frequencies, root mean squares values of the velocity time series) and detect possible anomalies or unexpected events by inspecting how much the actual frequencies deviate from the predicted ones. The TFT technique is used to detect the effects of the Viareggio earthquake that occurred on 6 February 2022, and the structural damage induced by three simulated damage scenarios. |
doi_str_mv | 10.1016/j.ymssp.2024.111382 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ymssp_2024_111382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327024002802</els_id><sourcerecordid>S0888327024002802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-5f61d2ebb0b2cfe5d7102a536de994aa6dae1f8a0ce1902e9b675547468ec0a43</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAja-QMrYSZwEiQUqFJAqsSlry3Em1FViR7YLyu1JKGtWb_F-NPMRcstgxYCJu8Nq7EMYVhx4tmKMpSU_IwsGlUgYZ-KcLKAsyyTlBVySqxAOAFBlIBYkPiEOtEPlrbGfVNmGhuiPOh696ugeVRf3tHfWROenwD3dYT-42dscg3GW7ryyoXW-Rx_opNOE61U30gYj6jhHjKW9Cs76kUb3PeWuyUWruoA3f7okH5vn3fo12b6_vK0ft4nmVRmTvBWs4VjXUHPdYt4UDLjKU9FgVWVKiUYha0sFGlkFHKtaFHmeFZkoUYPK0iVJT7vauxA8tnLwpld-lAzkDE4e5C84OYOTJ3BT6-HUwum0L4NeBm3QamyMnz6SjTP_9n8AB_Z71g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep learning and structural health monitoring: Temporal Fusion Transformers for anomaly detection in masonry towers</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Falchi, Fabrizio ; Girardi, Maria ; Gurioli, Gianmarco ; Messina, Nicola ; Padovani, Cristina ; Pellegrini, Daniele</creator><creatorcontrib>Falchi, Fabrizio ; Girardi, Maria ; Gurioli, Gianmarco ; Messina, Nicola ; Padovani, Cristina ; Pellegrini, Daniele</creatorcontrib><description>Detecting anomalies in the vibrational features of age-old buildings is crucial within the Structural Health Monitoring (SHM) framework. The SHM techniques can leverage information from onsite measurements and environmental sources to identify the dynamic properties (such as the frequencies) of the monitored structure, searching for possible deviations or unusual behavior over time. The Temporal Fusion Transformer (TFT) network is a deep learning algorithm designed for multi-horizon time series forecasting and initially tested on electricity, traffic, retail, and volatility problems. In this paper, it is applied to SHM. More precisely, the TFT approach is adopted to investigate the behavior of the Guinigi Tower located in Lucca (Italy) and subjected to a long-term dynamic monitoring campaign. The TFT network is trained on the tower’s experimental frequencies enriched with other environmental parameters. The transformer is then employed to predict the vibrational features (natural frequencies, root mean squares values of the velocity time series) and detect possible anomalies or unexpected events by inspecting how much the actual frequencies deviate from the predicted ones. The TFT technique is used to detect the effects of the Viareggio earthquake that occurred on 6 February 2022, and the structural damage induced by three simulated damage scenarios.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2024.111382</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Damage detection ; Deep learning ; Long-term dynamic monitoring ; Masonry towers ; Structural health monitoring</subject><ispartof>Mechanical systems and signal processing, 2024-06, Vol.215, p.111382, Article 111382</ispartof><rights>2024 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c298t-5f61d2ebb0b2cfe5d7102a536de994aa6dae1f8a0ce1902e9b675547468ec0a43</cites><orcidid>0000-0003-3011-2487 ; 0000-0002-3416-771X ; 0000-0001-6258-5313 ; 0000-0002-7358-5607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Falchi, Fabrizio</creatorcontrib><creatorcontrib>Girardi, Maria</creatorcontrib><creatorcontrib>Gurioli, Gianmarco</creatorcontrib><creatorcontrib>Messina, Nicola</creatorcontrib><creatorcontrib>Padovani, Cristina</creatorcontrib><creatorcontrib>Pellegrini, Daniele</creatorcontrib><title>Deep learning and structural health monitoring: Temporal Fusion Transformers for anomaly detection in masonry towers</title><title>Mechanical systems and signal processing</title><description>Detecting anomalies in the vibrational features of age-old buildings is crucial within the Structural Health Monitoring (SHM) framework. The SHM techniques can leverage information from onsite measurements and environmental sources to identify the dynamic properties (such as the frequencies) of the monitored structure, searching for possible deviations or unusual behavior over time. The Temporal Fusion Transformer (TFT) network is a deep learning algorithm designed for multi-horizon time series forecasting and initially tested on electricity, traffic, retail, and volatility problems. In this paper, it is applied to SHM. More precisely, the TFT approach is adopted to investigate the behavior of the Guinigi Tower located in Lucca (Italy) and subjected to a long-term dynamic monitoring campaign. The TFT network is trained on the tower’s experimental frequencies enriched with other environmental parameters. The transformer is then employed to predict the vibrational features (natural frequencies, root mean squares values of the velocity time series) and detect possible anomalies or unexpected events by inspecting how much the actual frequencies deviate from the predicted ones. The TFT technique is used to detect the effects of the Viareggio earthquake that occurred on 6 February 2022, and the structural damage induced by three simulated damage scenarios.</description><subject>Damage detection</subject><subject>Deep learning</subject><subject>Long-term dynamic monitoring</subject><subject>Masonry towers</subject><subject>Structural health monitoring</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAja-QMrYSZwEiQUqFJAqsSlry3Em1FViR7YLyu1JKGtWb_F-NPMRcstgxYCJu8Nq7EMYVhx4tmKMpSU_IwsGlUgYZ-KcLKAsyyTlBVySqxAOAFBlIBYkPiEOtEPlrbGfVNmGhuiPOh696ugeVRf3tHfWROenwD3dYT-42dscg3GW7ryyoXW-Rx_opNOE61U30gYj6jhHjKW9Cs76kUb3PeWuyUWruoA3f7okH5vn3fo12b6_vK0ft4nmVRmTvBWs4VjXUHPdYt4UDLjKU9FgVWVKiUYha0sFGlkFHKtaFHmeFZkoUYPK0iVJT7vauxA8tnLwpld-lAzkDE4e5C84OYOTJ3BT6-HUwum0L4NeBm3QamyMnz6SjTP_9n8AB_Z71g</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Falchi, Fabrizio</creator><creator>Girardi, Maria</creator><creator>Gurioli, Gianmarco</creator><creator>Messina, Nicola</creator><creator>Padovani, Cristina</creator><creator>Pellegrini, Daniele</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3011-2487</orcidid><orcidid>https://orcid.org/0000-0002-3416-771X</orcidid><orcidid>https://orcid.org/0000-0001-6258-5313</orcidid><orcidid>https://orcid.org/0000-0002-7358-5607</orcidid></search><sort><creationdate>20240601</creationdate><title>Deep learning and structural health monitoring: Temporal Fusion Transformers for anomaly detection in masonry towers</title><author>Falchi, Fabrizio ; Girardi, Maria ; Gurioli, Gianmarco ; Messina, Nicola ; Padovani, Cristina ; Pellegrini, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-5f61d2ebb0b2cfe5d7102a536de994aa6dae1f8a0ce1902e9b675547468ec0a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Damage detection</topic><topic>Deep learning</topic><topic>Long-term dynamic monitoring</topic><topic>Masonry towers</topic><topic>Structural health monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falchi, Fabrizio</creatorcontrib><creatorcontrib>Girardi, Maria</creatorcontrib><creatorcontrib>Gurioli, Gianmarco</creatorcontrib><creatorcontrib>Messina, Nicola</creatorcontrib><creatorcontrib>Padovani, Cristina</creatorcontrib><creatorcontrib>Pellegrini, Daniele</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falchi, Fabrizio</au><au>Girardi, Maria</au><au>Gurioli, Gianmarco</au><au>Messina, Nicola</au><au>Padovani, Cristina</au><au>Pellegrini, Daniele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning and structural health monitoring: Temporal Fusion Transformers for anomaly detection in masonry towers</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>215</volume><spage>111382</spage><pages>111382-</pages><artnum>111382</artnum><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>Detecting anomalies in the vibrational features of age-old buildings is crucial within the Structural Health Monitoring (SHM) framework. The SHM techniques can leverage information from onsite measurements and environmental sources to identify the dynamic properties (such as the frequencies) of the monitored structure, searching for possible deviations or unusual behavior over time. The Temporal Fusion Transformer (TFT) network is a deep learning algorithm designed for multi-horizon time series forecasting and initially tested on electricity, traffic, retail, and volatility problems. In this paper, it is applied to SHM. More precisely, the TFT approach is adopted to investigate the behavior of the Guinigi Tower located in Lucca (Italy) and subjected to a long-term dynamic monitoring campaign. The TFT network is trained on the tower’s experimental frequencies enriched with other environmental parameters. The transformer is then employed to predict the vibrational features (natural frequencies, root mean squares values of the velocity time series) and detect possible anomalies or unexpected events by inspecting how much the actual frequencies deviate from the predicted ones. The TFT technique is used to detect the effects of the Viareggio earthquake that occurred on 6 February 2022, and the structural damage induced by three simulated damage scenarios.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2024.111382</doi><orcidid>https://orcid.org/0000-0003-3011-2487</orcidid><orcidid>https://orcid.org/0000-0002-3416-771X</orcidid><orcidid>https://orcid.org/0000-0001-6258-5313</orcidid><orcidid>https://orcid.org/0000-0002-7358-5607</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-3270 |
ispartof | Mechanical systems and signal processing, 2024-06, Vol.215, p.111382, Article 111382 |
issn | 0888-3270 1096-1216 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_ymssp_2024_111382 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Damage detection Deep learning Long-term dynamic monitoring Masonry towers Structural health monitoring |
title | Deep learning and structural health monitoring: Temporal Fusion Transformers for anomaly detection in masonry towers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20and%20structural%20health%20monitoring:%20Temporal%20Fusion%20Transformers%20for%20anomaly%20detection%20in%20masonry%20towers&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Falchi,%20Fabrizio&rft.date=2024-06-01&rft.volume=215&rft.spage=111382&rft.pages=111382-&rft.artnum=111382&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2024.111382&rft_dat=%3Celsevier_cross%3ES0888327024002802%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c298t-5f61d2ebb0b2cfe5d7102a536de994aa6dae1f8a0ce1902e9b675547468ec0a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |