Loading…
Asplund spaces and a variant of weak uniform rotundity
We introduce a property formally weaker than weak uniform rotundity, which we call equatorial weak uniform rotundity. We show that an equatorially weakly uniformly rotund norm need not be weakly locally uniformly rotund. Nevertheless, we show that an equatorially weakly uniformly rotund Banach space...
Saved in:
Published in: | Bulletin of the Australian Mathematical Society 2000-06, Vol.61 (3), p.451-454 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c320t-77f5cd8d94692f6ce97ee7602ac2511dcb7337107b7edc2cb5fee2ab2cefba833 |
container_end_page | 454 |
container_issue | 3 |
container_start_page | 451 |
container_title | Bulletin of the Australian Mathematical Society |
container_volume | 61 |
creator | Giles, John Vanderwerff, Jon |
description | We introduce a property formally weaker than weak uniform rotundity, which we call equatorial weak uniform rotundity. We show that an equatorially weakly uniformly rotund norm need not be weakly locally uniformly rotund. Nevertheless, we show that an equatorially weakly uniformly rotund Banach space is an Asplund space. |
doi_str_mv | 10.1017/S0004972700022462 |
format | article |
fullrecord | <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0004972700022462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0004972700022462</cupid><sourcerecordid>10_1017_S0004972700022462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-77f5cd8d94692f6ce97ee7602ac2511dcb7337107b7edc2cb5fee2ab2cefba833</originalsourceid><addsrcrecordid>eNp9T9tKAzEUDKJgrX6Ab_mB1VyanN3H0moVCiJV-hjOZhPZXnZLsqv2701p8UXwaeYwM2cYQm45u-OMw_2CMTYqQEBCIUZanJEBB6UyrqU8J4ODnB30S3IV4ypdSol8QPQ47jZ9U9G4Q-sixUSRfmKoselo6-mXwzXtm9q3YUtD2yVv3e2vyYXHTXQ3JxyS98eHt8lTNn-ZPU_G88xKwboMwCtb5VUx0oXw2roCnAPNBFqhOK9sCVICZ1CCq6ywpfLOCSyFdb7EXMoh4ce_NrQxBufNLtRbDHvDmTkMN3-Gp0x2zNSxc9-_AQxro0GCMnr2aiYLPl1OZ0sDyS9PHbgtQ119OLNq-9CkXf-0_ABgMGnI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asplund spaces and a variant of weak uniform rotundity</title><source>KB+ Cambridge University Press: JISC Collections:Full Collection Digital Archives (STM and HSS)</source><creator>Giles, John ; Vanderwerff, Jon</creator><creatorcontrib>Giles, John ; Vanderwerff, Jon</creatorcontrib><description>We introduce a property formally weaker than weak uniform rotundity, which we call equatorial weak uniform rotundity. We show that an equatorially weakly uniformly rotund norm need not be weakly locally uniformly rotund. Nevertheless, we show that an equatorially weakly uniformly rotund Banach space is an Asplund space.</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S0004972700022462</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Bulletin of the Australian Mathematical Society, 2000-06, Vol.61 (3), p.451-454</ispartof><rights>Copyright © Australian Mathematical Society 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-77f5cd8d94692f6ce97ee7602ac2511dcb7337107b7edc2cb5fee2ab2cefba833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0004972700022462/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,55689</link.rule.ids></links><search><creatorcontrib>Giles, John</creatorcontrib><creatorcontrib>Vanderwerff, Jon</creatorcontrib><title>Asplund spaces and a variant of weak uniform rotundity</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Austral. Math. Soc</addtitle><description>We introduce a property formally weaker than weak uniform rotundity, which we call equatorial weak uniform rotundity. We show that an equatorially weakly uniformly rotund norm need not be weakly locally uniformly rotund. Nevertheless, we show that an equatorially weakly uniformly rotund Banach space is an Asplund space.</description><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp9T9tKAzEUDKJgrX6Ab_mB1VyanN3H0moVCiJV-hjOZhPZXnZLsqv2701p8UXwaeYwM2cYQm45u-OMw_2CMTYqQEBCIUZanJEBB6UyrqU8J4ODnB30S3IV4ypdSol8QPQ47jZ9U9G4Q-sixUSRfmKoselo6-mXwzXtm9q3YUtD2yVv3e2vyYXHTXQ3JxyS98eHt8lTNn-ZPU_G88xKwboMwCtb5VUx0oXw2roCnAPNBFqhOK9sCVICZ1CCq6ywpfLOCSyFdb7EXMoh4ce_NrQxBufNLtRbDHvDmTkMN3-Gp0x2zNSxc9-_AQxro0GCMnr2aiYLPl1OZ0sDyS9PHbgtQ119OLNq-9CkXf-0_ABgMGnI</recordid><startdate>20000601</startdate><enddate>20000601</enddate><creator>Giles, John</creator><creator>Vanderwerff, Jon</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000601</creationdate><title>Asplund spaces and a variant of weak uniform rotundity</title><author>Giles, John ; Vanderwerff, Jon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-77f5cd8d94692f6ce97ee7602ac2511dcb7337107b7edc2cb5fee2ab2cefba833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giles, John</creatorcontrib><creatorcontrib>Vanderwerff, Jon</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giles, John</au><au>Vanderwerff, Jon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asplund spaces and a variant of weak uniform rotundity</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Austral. Math. Soc</addtitle><date>2000-06-01</date><risdate>2000</risdate><volume>61</volume><issue>3</issue><spage>451</spage><epage>454</epage><pages>451-454</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>We introduce a property formally weaker than weak uniform rotundity, which we call equatorial weak uniform rotundity. We show that an equatorially weakly uniformly rotund norm need not be weakly locally uniformly rotund. Nevertheless, we show that an equatorially weakly uniformly rotund Banach space is an Asplund space.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0004972700022462</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-9727 |
ispartof | Bulletin of the Australian Mathematical Society, 2000-06, Vol.61 (3), p.451-454 |
issn | 0004-9727 1755-1633 |
language | eng |
recordid | cdi_crossref_primary_10_1017_S0004972700022462 |
source | KB+ Cambridge University Press: JISC Collections:Full Collection Digital Archives (STM and HSS) |
title | Asplund spaces and a variant of weak uniform rotundity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asplund%20spaces%20and%20a%20variant%20of%20weak%20uniform%20rotundity&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=Giles,%20John&rft.date=2000-06-01&rft.volume=61&rft.issue=3&rft.spage=451&rft.epage=454&rft.pages=451-454&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S0004972700022462&rft_dat=%3Ccambridge_cross%3E10_1017_S0004972700022462%3C/cambridge_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-77f5cd8d94692f6ce97ee7602ac2511dcb7337107b7edc2cb5fee2ab2cefba833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0004972700022462&rfr_iscdi=true |