Loading…

Asplund spaces and a variant of weak uniform rotundity

We introduce a property formally weaker than weak uniform rotundity, which we call equatorial weak uniform rotundity. We show that an equatorially weakly uniformly rotund norm need not be weakly locally uniformly rotund. Nevertheless, we show that an equatorially weakly uniformly rotund Banach space...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of the Australian Mathematical Society 2000-06, Vol.61 (3), p.451-454
Main Authors: Giles, John, Vanderwerff, Jon
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c320t-77f5cd8d94692f6ce97ee7602ac2511dcb7337107b7edc2cb5fee2ab2cefba833
container_end_page 454
container_issue 3
container_start_page 451
container_title Bulletin of the Australian Mathematical Society
container_volume 61
creator Giles, John
Vanderwerff, Jon
description We introduce a property formally weaker than weak uniform rotundity, which we call equatorial weak uniform rotundity. We show that an equatorially weakly uniformly rotund norm need not be weakly locally uniformly rotund. Nevertheless, we show that an equatorially weakly uniformly rotund Banach space is an Asplund space.
doi_str_mv 10.1017/S0004972700022462
format article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0004972700022462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0004972700022462</cupid><sourcerecordid>10_1017_S0004972700022462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-77f5cd8d94692f6ce97ee7602ac2511dcb7337107b7edc2cb5fee2ab2cefba833</originalsourceid><addsrcrecordid>eNp9T9tKAzEUDKJgrX6Ab_mB1VyanN3H0moVCiJV-hjOZhPZXnZLsqv2701p8UXwaeYwM2cYQm45u-OMw_2CMTYqQEBCIUZanJEBB6UyrqU8J4ODnB30S3IV4ypdSol8QPQ47jZ9U9G4Q-sixUSRfmKoselo6-mXwzXtm9q3YUtD2yVv3e2vyYXHTXQ3JxyS98eHt8lTNn-ZPU_G88xKwboMwCtb5VUx0oXw2roCnAPNBFqhOK9sCVICZ1CCq6ywpfLOCSyFdb7EXMoh4ce_NrQxBufNLtRbDHvDmTkMN3-Gp0x2zNSxc9-_AQxro0GCMnr2aiYLPl1OZ0sDyS9PHbgtQ119OLNq-9CkXf-0_ABgMGnI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asplund spaces and a variant of weak uniform rotundity</title><source>KB+ Cambridge University Press: JISC Collections:Full Collection Digital Archives (STM and HSS)</source><creator>Giles, John ; Vanderwerff, Jon</creator><creatorcontrib>Giles, John ; Vanderwerff, Jon</creatorcontrib><description>We introduce a property formally weaker than weak uniform rotundity, which we call equatorial weak uniform rotundity. We show that an equatorially weakly uniformly rotund norm need not be weakly locally uniformly rotund. Nevertheless, we show that an equatorially weakly uniformly rotund Banach space is an Asplund space.</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S0004972700022462</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Bulletin of the Australian Mathematical Society, 2000-06, Vol.61 (3), p.451-454</ispartof><rights>Copyright © Australian Mathematical Society 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-77f5cd8d94692f6ce97ee7602ac2511dcb7337107b7edc2cb5fee2ab2cefba833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0004972700022462/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,55689</link.rule.ids></links><search><creatorcontrib>Giles, John</creatorcontrib><creatorcontrib>Vanderwerff, Jon</creatorcontrib><title>Asplund spaces and a variant of weak uniform rotundity</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Austral. Math. Soc</addtitle><description>We introduce a property formally weaker than weak uniform rotundity, which we call equatorial weak uniform rotundity. We show that an equatorially weakly uniformly rotund norm need not be weakly locally uniformly rotund. Nevertheless, we show that an equatorially weakly uniformly rotund Banach space is an Asplund space.</description><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp9T9tKAzEUDKJgrX6Ab_mB1VyanN3H0moVCiJV-hjOZhPZXnZLsqv2701p8UXwaeYwM2cYQm45u-OMw_2CMTYqQEBCIUZanJEBB6UyrqU8J4ODnB30S3IV4ypdSol8QPQ47jZ9U9G4Q-sixUSRfmKoselo6-mXwzXtm9q3YUtD2yVv3e2vyYXHTXQ3JxyS98eHt8lTNn-ZPU_G88xKwboMwCtb5VUx0oXw2roCnAPNBFqhOK9sCVICZ1CCq6ywpfLOCSyFdb7EXMoh4ce_NrQxBufNLtRbDHvDmTkMN3-Gp0x2zNSxc9-_AQxro0GCMnr2aiYLPl1OZ0sDyS9PHbgtQ119OLNq-9CkXf-0_ABgMGnI</recordid><startdate>20000601</startdate><enddate>20000601</enddate><creator>Giles, John</creator><creator>Vanderwerff, Jon</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000601</creationdate><title>Asplund spaces and a variant of weak uniform rotundity</title><author>Giles, John ; Vanderwerff, Jon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-77f5cd8d94692f6ce97ee7602ac2511dcb7337107b7edc2cb5fee2ab2cefba833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giles, John</creatorcontrib><creatorcontrib>Vanderwerff, Jon</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giles, John</au><au>Vanderwerff, Jon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asplund spaces and a variant of weak uniform rotundity</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Austral. Math. Soc</addtitle><date>2000-06-01</date><risdate>2000</risdate><volume>61</volume><issue>3</issue><spage>451</spage><epage>454</epage><pages>451-454</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>We introduce a property formally weaker than weak uniform rotundity, which we call equatorial weak uniform rotundity. We show that an equatorially weakly uniformly rotund norm need not be weakly locally uniformly rotund. Nevertheless, we show that an equatorially weakly uniformly rotund Banach space is an Asplund space.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0004972700022462</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-9727
ispartof Bulletin of the Australian Mathematical Society, 2000-06, Vol.61 (3), p.451-454
issn 0004-9727
1755-1633
language eng
recordid cdi_crossref_primary_10_1017_S0004972700022462
source KB+ Cambridge University Press: JISC Collections:Full Collection Digital Archives (STM and HSS)
title Asplund spaces and a variant of weak uniform rotundity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asplund%20spaces%20and%20a%20variant%20of%20weak%20uniform%20rotundity&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=Giles,%20John&rft.date=2000-06-01&rft.volume=61&rft.issue=3&rft.spage=451&rft.epage=454&rft.pages=451-454&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S0004972700022462&rft_dat=%3Ccambridge_cross%3E10_1017_S0004972700022462%3C/cambridge_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-77f5cd8d94692f6ce97ee7602ac2511dcb7337107b7edc2cb5fee2ab2cefba833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0004972700022462&rfr_iscdi=true