Loading…

Logarithmic Asymptotics for Multidimensional Extremes Under Nonlinear Scalings

Let W = { W n : n ∈ N } be a sequence of random vectors in R d , d ≥ 1. In this paper we consider the logarithmic asymptotics of the extremes of W , that is, for any vector q > 0 in R d , we find that log P (there exists n ∈ N : W n u q ) as u → ∞. We follow the approach of the restricted large d...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied probability 2015-03, Vol.52 (1), p.68-81
Main Authors: Kosiński, K. M., Mandjes, M.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c901-570a6b821d62514edb32639617ceeaccb40f69a6835fa840acb3d76071e0c5de3
cites cdi_FETCH-LOGICAL-c901-570a6b821d62514edb32639617ceeaccb40f69a6835fa840acb3d76071e0c5de3
container_end_page 81
container_issue 1
container_start_page 68
container_title Journal of applied probability
container_volume 52
creator Kosiński, K. M.
Mandjes, M.
description Let W = { W n : n ∈ N } be a sequence of random vectors in R d , d ≥ 1. In this paper we consider the logarithmic asymptotics of the extremes of W , that is, for any vector q > 0 in R d , we find that log P (there exists n ∈ N : W n u q ) as u → ∞. We follow the approach of the restricted large deviation principle introduced in Duffy (2003). That is, we assume that, for every q ≥ 0 , and some scalings { a n }, { v n }, (1 / v n )log P ( W n / a n ≥ u q ) has a, continuous in q , limit J W ( q ). We allow the scalings { a n } and { v n } to be regularly varying with a positive index. This approach is general enough to incorporate sequences W , such that the probability law of W n / a n satisfies the large deviation principle with continuous, not necessarily convex, rate functions. The equations for these asymptotics are in agreement with the literature.
doi_str_mv 10.1017/S0021900200012201
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0021900200012201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_S0021900200012201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c901-570a6b821d62514edb32639617ceeaccb40f69a6835fa840acb3d76071e0c5de3</originalsourceid><addsrcrecordid>eNplUMFOwzAUixBIlMEHcMsPFN5LmqQ9TtOASWMcNs5VmqQjqG2mpEjs72kFNy62JVuWbELuER4QUD3uARhWEwAAMgZ4QTIslMglKHZJstnOZ_-a3KT0OYUKUamM7LbhqKMfP3pv6DKd-9MYRm8SbUOkr1_d6K3v3ZB8GHRH199jdL1L9H2wLtJdGDo_OB3p3uhJHdMtuWp1l9zdHy_I4Wl9WL3k27fnzWq5zU0FmAsFWjYlQyuZwMLZhjPJK4nKOKeNaQpoZaVlyUWrywK0abhV0xJ0YIR1fEHwt9bEkFJ0bX2KvtfxXCPU8x_1vz_4D6WlU6E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Logarithmic Asymptotics for Multidimensional Extremes Under Nonlinear Scalings</title><source>JSTOR Archival Journals</source><creator>Kosiński, K. M. ; Mandjes, M.</creator><creatorcontrib>Kosiński, K. M. ; Mandjes, M.</creatorcontrib><description>Let W = { W n : n ∈ N } be a sequence of random vectors in R d , d ≥ 1. In this paper we consider the logarithmic asymptotics of the extremes of W , that is, for any vector q &gt; 0 in R d , we find that log P (there exists n ∈ N : W n u q ) as u → ∞. We follow the approach of the restricted large deviation principle introduced in Duffy (2003). That is, we assume that, for every q ≥ 0 , and some scalings { a n }, { v n }, (1 / v n )log P ( W n / a n ≥ u q ) has a, continuous in q , limit J W ( q ). We allow the scalings { a n } and { v n } to be regularly varying with a positive index. This approach is general enough to incorporate sequences W , such that the probability law of W n / a n satisfies the large deviation principle with continuous, not necessarily convex, rate functions. The equations for these asymptotics are in agreement with the literature.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1017/S0021900200012201</identifier><language>eng</language><ispartof>Journal of applied probability, 2015-03, Vol.52 (1), p.68-81</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c901-570a6b821d62514edb32639617ceeaccb40f69a6835fa840acb3d76071e0c5de3</citedby><cites>FETCH-LOGICAL-c901-570a6b821d62514edb32639617ceeaccb40f69a6835fa840acb3d76071e0c5de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kosiński, K. M.</creatorcontrib><creatorcontrib>Mandjes, M.</creatorcontrib><title>Logarithmic Asymptotics for Multidimensional Extremes Under Nonlinear Scalings</title><title>Journal of applied probability</title><description>Let W = { W n : n ∈ N } be a sequence of random vectors in R d , d ≥ 1. In this paper we consider the logarithmic asymptotics of the extremes of W , that is, for any vector q &gt; 0 in R d , we find that log P (there exists n ∈ N : W n u q ) as u → ∞. We follow the approach of the restricted large deviation principle introduced in Duffy (2003). That is, we assume that, for every q ≥ 0 , and some scalings { a n }, { v n }, (1 / v n )log P ( W n / a n ≥ u q ) has a, continuous in q , limit J W ( q ). We allow the scalings { a n } and { v n } to be regularly varying with a positive index. This approach is general enough to incorporate sequences W , such that the probability law of W n / a n satisfies the large deviation principle with continuous, not necessarily convex, rate functions. The equations for these asymptotics are in agreement with the literature.</description><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNplUMFOwzAUixBIlMEHcMsPFN5LmqQ9TtOASWMcNs5VmqQjqG2mpEjs72kFNy62JVuWbELuER4QUD3uARhWEwAAMgZ4QTIslMglKHZJstnOZ_-a3KT0OYUKUamM7LbhqKMfP3pv6DKd-9MYRm8SbUOkr1_d6K3v3ZB8GHRH199jdL1L9H2wLtJdGDo_OB3p3uhJHdMtuWp1l9zdHy_I4Wl9WL3k27fnzWq5zU0FmAsFWjYlQyuZwMLZhjPJK4nKOKeNaQpoZaVlyUWrywK0abhV0xJ0YIR1fEHwt9bEkFJ0bX2KvtfxXCPU8x_1vz_4D6WlU6E</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Kosiński, K. M.</creator><creator>Mandjes, M.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201503</creationdate><title>Logarithmic Asymptotics for Multidimensional Extremes Under Nonlinear Scalings</title><author>Kosiński, K. M. ; Mandjes, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c901-570a6b821d62514edb32639617ceeaccb40f69a6835fa840acb3d76071e0c5de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosiński, K. M.</creatorcontrib><creatorcontrib>Mandjes, M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kosiński, K. M.</au><au>Mandjes, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Logarithmic Asymptotics for Multidimensional Extremes Under Nonlinear Scalings</atitle><jtitle>Journal of applied probability</jtitle><date>2015-03</date><risdate>2015</risdate><volume>52</volume><issue>1</issue><spage>68</spage><epage>81</epage><pages>68-81</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>Let W = { W n : n ∈ N } be a sequence of random vectors in R d , d ≥ 1. In this paper we consider the logarithmic asymptotics of the extremes of W , that is, for any vector q &gt; 0 in R d , we find that log P (there exists n ∈ N : W n u q ) as u → ∞. We follow the approach of the restricted large deviation principle introduced in Duffy (2003). That is, we assume that, for every q ≥ 0 , and some scalings { a n }, { v n }, (1 / v n )log P ( W n / a n ≥ u q ) has a, continuous in q , limit J W ( q ). We allow the scalings { a n } and { v n } to be regularly varying with a positive index. This approach is general enough to incorporate sequences W , such that the probability law of W n / a n satisfies the large deviation principle with continuous, not necessarily convex, rate functions. The equations for these asymptotics are in agreement with the literature.</abstract><doi>10.1017/S0021900200012201</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 2015-03, Vol.52 (1), p.68-81
issn 0021-9002
1475-6072
language eng
recordid cdi_crossref_primary_10_1017_S0021900200012201
source JSTOR Archival Journals
title Logarithmic Asymptotics for Multidimensional Extremes Under Nonlinear Scalings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Logarithmic%20Asymptotics%20for%20Multidimensional%20Extremes%20Under%20Nonlinear%20Scalings&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Kosi%C5%84ski,%20K.%20M.&rft.date=2015-03&rft.volume=52&rft.issue=1&rft.spage=68&rft.epage=81&rft.pages=68-81&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.1017/S0021900200012201&rft_dat=%3Ccrossref%3E10_1017_S0021900200012201%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c901-570a6b821d62514edb32639617ceeaccb40f69a6835fa840acb3d76071e0c5de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true