Loading…

Finite-time optimal control of a process leaving an interval

Consider the optimal control problem of leaving an interval ( – a, a ) in a limited playing time. In the discrete-time problem, a is a positive integer and the player's position is given by a simple random walk on the integers with initial position x. At each time instant, the player chooses a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied probability 1996-09, Vol.33 (3), p.714-728
Main Authors: Mcbeth, Douglas W., Weerasinghe, Ananda P. N.
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c110t-8c6d276599344211ed2ae2b6840d0ef787bc9901d9d4bf7118c72801d927bb4c3
container_end_page 728
container_issue 3
container_start_page 714
container_title Journal of applied probability
container_volume 33
creator Mcbeth, Douglas W.
Weerasinghe, Ananda P. N.
description Consider the optimal control problem of leaving an interval ( – a, a ) in a limited playing time. In the discrete-time problem, a is a positive integer and the player's position is given by a simple random walk on the integers with initial position x. At each time instant, the player chooses a coin from a control set where the probability of returning heads depends on the current position and the remaining amount of playing time, and the player is betting a unit value on the toss of the coin: heads returning +1 and tails − 1. We discuss the optimal strategy for this discrete-time game. In the continuous-time problem the player chooses infinitesimal mean and infinitesimal variance parameters from a control set which may depend upon the player's position. The problem is to find optimal mean and variance parameters that maximize the probability of leaving the interval [ — a, a ] within a finite time T > 0.
doi_str_mv 10.1017/S0021900200100154
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0021900200100154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_S0021900200100154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c110t-8c6d276599344211ed2ae2b6840d0ef787bc9901d9d4bf7118c72801d927bb4c3</originalsourceid><addsrcrecordid>eNplj0FLxDAQhYMoWFd_gLf8gehMmjYJeJHFVWHBg7vnkqapRGJTkrDgv7dFb8LwHo9vGOYRcotwh4Dy_h2Ao14EAJdpxBmpUMiGtSD5OalWzFZ-Sa5y_lxWRKNlRR52fvLFseK_HI3zYiZQG6eSYqBxpIbOKVqXMw3OnPz0Qc1E_VRcOplwTS5GE7K7-fMNOe6eDtsXtn97ft0-7plFhMKUbQcu20brWgiO6AZuHO9bJWAAN0ole6s14KAH0Y8SUVnJ1Zq57Hth6w3B37s2xZyTG7s5LY-m7w6hW-t3_-rXP3A1S-U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Finite-time optimal control of a process leaving an interval</title><source>JSTOR Archival Journals</source><creator>Mcbeth, Douglas W. ; Weerasinghe, Ananda P. N.</creator><creatorcontrib>Mcbeth, Douglas W. ; Weerasinghe, Ananda P. N.</creatorcontrib><description>Consider the optimal control problem of leaving an interval ( – a, a ) in a limited playing time. In the discrete-time problem, a is a positive integer and the player's position is given by a simple random walk on the integers with initial position x. At each time instant, the player chooses a coin from a control set where the probability of returning heads depends on the current position and the remaining amount of playing time, and the player is betting a unit value on the toss of the coin: heads returning +1 and tails − 1. We discuss the optimal strategy for this discrete-time game. In the continuous-time problem the player chooses infinitesimal mean and infinitesimal variance parameters from a control set which may depend upon the player's position. The problem is to find optimal mean and variance parameters that maximize the probability of leaving the interval [ — a, a ] within a finite time T &gt; 0.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1017/S0021900200100154</identifier><language>eng</language><ispartof>Journal of applied probability, 1996-09, Vol.33 (3), p.714-728</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c110t-8c6d276599344211ed2ae2b6840d0ef787bc9901d9d4bf7118c72801d927bb4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mcbeth, Douglas W.</creatorcontrib><creatorcontrib>Weerasinghe, Ananda P. N.</creatorcontrib><title>Finite-time optimal control of a process leaving an interval</title><title>Journal of applied probability</title><description>Consider the optimal control problem of leaving an interval ( – a, a ) in a limited playing time. In the discrete-time problem, a is a positive integer and the player's position is given by a simple random walk on the integers with initial position x. At each time instant, the player chooses a coin from a control set where the probability of returning heads depends on the current position and the remaining amount of playing time, and the player is betting a unit value on the toss of the coin: heads returning +1 and tails − 1. We discuss the optimal strategy for this discrete-time game. In the continuous-time problem the player chooses infinitesimal mean and infinitesimal variance parameters from a control set which may depend upon the player's position. The problem is to find optimal mean and variance parameters that maximize the probability of leaving the interval [ — a, a ] within a finite time T &gt; 0.</description><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNplj0FLxDAQhYMoWFd_gLf8gehMmjYJeJHFVWHBg7vnkqapRGJTkrDgv7dFb8LwHo9vGOYRcotwh4Dy_h2Ao14EAJdpxBmpUMiGtSD5OalWzFZ-Sa5y_lxWRKNlRR52fvLFseK_HI3zYiZQG6eSYqBxpIbOKVqXMw3OnPz0Qc1E_VRcOplwTS5GE7K7-fMNOe6eDtsXtn97ft0-7plFhMKUbQcu20brWgiO6AZuHO9bJWAAN0ole6s14KAH0Y8SUVnJ1Zq57Hth6w3B37s2xZyTG7s5LY-m7w6hW-t3_-rXP3A1S-U</recordid><startdate>199609</startdate><enddate>199609</enddate><creator>Mcbeth, Douglas W.</creator><creator>Weerasinghe, Ananda P. N.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199609</creationdate><title>Finite-time optimal control of a process leaving an interval</title><author>Mcbeth, Douglas W. ; Weerasinghe, Ananda P. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c110t-8c6d276599344211ed2ae2b6840d0ef787bc9901d9d4bf7118c72801d927bb4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mcbeth, Douglas W.</creatorcontrib><creatorcontrib>Weerasinghe, Ananda P. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mcbeth, Douglas W.</au><au>Weerasinghe, Ananda P. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-time optimal control of a process leaving an interval</atitle><jtitle>Journal of applied probability</jtitle><date>1996-09</date><risdate>1996</risdate><volume>33</volume><issue>3</issue><spage>714</spage><epage>728</epage><pages>714-728</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>Consider the optimal control problem of leaving an interval ( – a, a ) in a limited playing time. In the discrete-time problem, a is a positive integer and the player's position is given by a simple random walk on the integers with initial position x. At each time instant, the player chooses a coin from a control set where the probability of returning heads depends on the current position and the remaining amount of playing time, and the player is betting a unit value on the toss of the coin: heads returning +1 and tails − 1. We discuss the optimal strategy for this discrete-time game. In the continuous-time problem the player chooses infinitesimal mean and infinitesimal variance parameters from a control set which may depend upon the player's position. The problem is to find optimal mean and variance parameters that maximize the probability of leaving the interval [ — a, a ] within a finite time T &gt; 0.</abstract><doi>10.1017/S0021900200100154</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 1996-09, Vol.33 (3), p.714-728
issn 0021-9002
1475-6072
language eng
recordid cdi_crossref_primary_10_1017_S0021900200100154
source JSTOR Archival Journals
title Finite-time optimal control of a process leaving an interval
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A57%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-time%20optimal%20control%20of%20a%20process%20leaving%20an%20interval&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Mcbeth,%20Douglas%20W.&rft.date=1996-09&rft.volume=33&rft.issue=3&rft.spage=714&rft.epage=728&rft.pages=714-728&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.1017/S0021900200100154&rft_dat=%3Ccrossref%3E10_1017_S0021900200100154%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c110t-8c6d276599344211ed2ae2b6840d0ef787bc9901d9d4bf7118c72801d927bb4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true