Loading…

Nonlinear energy transfer in gravity–capillary wave spectra, with applications

The energy flux in gravity-capillary wave spectra has been obtained using Hasselmann's (1962) perturbation analysis for a homogeneous Gaussian sea. As expected, resonant interactions now appear at second order, and a third-order perturbation analysis shows that energy is redistributed from wave...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 1972-08, Vol.54 (3), p.507-520
Main Authors: Valenzuela, G. R., Laing, M. B.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The energy flux in gravity-capillary wave spectra has been obtained using Hasselmann's (1962) perturbation analysis for a homogeneous Gaussian sea. As expected, resonant interactions now appear at second order, and a third-order perturbation analysis shows that energy is redistributed from waves with intermediate wavelengths (in the neighbourhood of 1·7 cm) toward gravity and capillary waves. Numerical computations are also obtained for the energy flux and the interaction time of a sharply peaked spectrum consisting of wavenumbers concentrated around a single wavenumber, superposed on a smooth background spectrum. The range of validity of the inviscid results is discussed.
ISSN:0022-1120
1469-7645
DOI:10.1017/S0022112072000849