Loading…

Bedload transport of fine gravel observed by motion-picture photography

Motion pictures taken at Duck Creek, a clear stream 6.5 m wide and 35 cm deep near Pinedale, Wyoming, provide detailed, quantitative information on both the modes of motion of individual bedload particles and the collective motions of large numbers of them. Bed shear stress was approximately 6 Pa (6...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 1988-07, Vol.192, p.193-217
Main Authors: Drake, Thomas G., Shreve, Ronald L., Dietrich, William E., Whiting, Peter J., Leopold, Luna B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Motion pictures taken at Duck Creek, a clear stream 6.5 m wide and 35 cm deep near Pinedale, Wyoming, provide detailed, quantitative information on both the modes of motion of individual bedload particles and the collective motions of large numbers of them. Bed shear stress was approximately 6 Pa (60 dynes cm−2), which was about twice the threshold for movement of the 4 mm median diameter fine gravel bed material; and transport was almost entirely as bedload. The displacements of individual particles occurred mainly by rolling of the majority of the particles and saltation of the smallest ones, and rarely by brief sliding of large, angular ones. Entrainment was principally by rollover of the larger particles and liftoff of the smaller ones, and infrequently by ejection caused by impacts, whereas distrainment was primarily by diminution of fluid forces in the case of rolling particles and by collisions with larger bed particles in the case of saltating ones. The displacement times averaged about 0.2−0.4 s and generally were much shorter than the intervening repose times. The collective motions of the particles were characterized by frequent, brief, localized, random sweep-transport events of very high rates of entrainment and transport, which in the aggregate transported approximately 70% of the total load moved. These events occurred 9% of the time at any particular point of the bed, lasted 1–2 s, affected areas typically 20–50 cm long by 10–20 cm wide, and involved bedload concentrations approximately 10 times greater than background. The distances travelled during displacements averaged about 15 times the particle diameter. Despite the differences in their dominant modes of movement, the 8–16 mm particles typically travelled only about 30% slower during displacement than the 2–4 mm ones, whose speeds averaged 21 cm s−1. Particles starting from the same point not only moved intermittently downstream but also dispersed both longitudinally and transversely, with diffusivities of 4.6 and 0.26 cm2 s−1, respectively. The bedload transport rates measured from the films were consistent with those determined conventionally with a bedload sampler. The 2–4 mm particles were entrained 6 times faster on finer areas of the bed, where 8–16 mm particles covered 6% of the surface area, than on coarser ones, where they covered 12%, even though 2–4 and 4–8 mm particles covered practically the same percentage areas in both cases. The 4–8 and 8–16 mm particles, in contrast,
ISSN:0022-1120
1469-7645
DOI:10.1017/S0022112088001831