Loading…
On the chance of freak waves at sea
When deep-water surface gravity waves traverse an area with a curved or otherwise variable current, the current can act analogously to an optical lens, to focus wave action into a caustic region. In this region, waves of surprisingly large size, alternatively called freak, rogue, or giant waves are...
Saved in:
Published in: | Journal of fluid mechanics 1998-01, Vol.355, p.113-138 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c420t-fa3c919c2f295a4f5a4bc22301d304970138859c10d303335068312fd83935723 |
---|---|
cites | |
container_end_page | 138 |
container_issue | |
container_start_page | 113 |
container_title | Journal of fluid mechanics |
container_volume | 355 |
creator | WHITE, BENJAMIN S. FORNBERG, BENGT |
description | When deep-water surface gravity waves traverse an
area with a curved or otherwise
variable current, the current can act analogously to an
optical lens, to focus wave
action into a caustic region. In this region, waves of
surprisingly large size, alternatively
called freak, rogue, or giant waves are produced. We show
how this mechanism
produces freak waves at random locations when ocean swell
traverses an area of
random current. When the current has a constant (possibly
zero) mean with small
random fluctuations, we show that the probability distribution
for the formation of a
freak wave is universal, that is, it does not depend on
the statistics of the current, but
only on a single distance scale parameter, provided that
this parameter is finite and
non-zero. Our numerical simulations show excellent agreement
with the theory, even
for current standard deviation as large as
1.0 m s−1. Since many of these results are
derived for arbitrary dispersion relations with certain
general properties, they include
as a special case previously published work on caustics
in geometrical optics. |
doi_str_mv | 10.1017/S0022112097007751 |
format | article |
fullrecord | <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0022112097007751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112097007751</cupid><sourcerecordid>10_1017_S0022112097007751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-fa3c919c2f295a4f5a4bc22301d304970138859c10d303335068312fd83935723</originalsourceid><addsrcrecordid>eNp9j81LAzEQxYMoWKt_gLcFva7OZDab3aMU7UqLRavnkKaJ3X6TrF__vVlaehE8DMPwfm94j7FLhBsElLdjAM4ROZQSQEqBR6yDWV6mMs_EMeu0ctrqp-wshDkAUkQ77Gq0TpqZTcxMr41NNi5x3upF8qU_bUh0kwSrz9mJ08tgL_a7y94e7l97VToc9R97d8PUZBya1GkyJZaGO14Knbk4E8M5AU4JspgLqShEaRDiTUQC8oKQu2lBJQnJqctw99f4TQjeOrX19Ur7H4Wg2pbqT8voud55tjoYvXQ-1qjDwchRQMQjlu6wOjT2-yBrv1C5JClU3n9Wg8FLNX6iSlWRp30UvZr4evpu1Xzz4dex_j9hfgHYhmtL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the chance of freak waves at sea</title><source>Cambridge Journals Online</source><creator>WHITE, BENJAMIN S. ; FORNBERG, BENGT</creator><creatorcontrib>WHITE, BENJAMIN S. ; FORNBERG, BENGT</creatorcontrib><description>When deep-water surface gravity waves traverse an
area with a curved or otherwise
variable current, the current can act analogously to an
optical lens, to focus wave
action into a caustic region. In this region, waves of
surprisingly large size, alternatively
called freak, rogue, or giant waves are produced. We show
how this mechanism
produces freak waves at random locations when ocean swell
traverses an area of
random current. When the current has a constant (possibly
zero) mean with small
random fluctuations, we show that the probability distribution
for the formation of a
freak wave is universal, that is, it does not depend on
the statistics of the current, but
only on a single distance scale parameter, provided that
this parameter is finite and
non-zero. Our numerical simulations show excellent agreement
with the theory, even
for current standard deviation as large as
1.0 m s−1. Since many of these results are
derived for arbitrary dispersion relations with certain
general properties, they include
as a special case previously published work on caustics
in geometrical optics.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112097007751</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Physics of the oceans ; Surface waves, tides and sea level. Seiches</subject><ispartof>Journal of fluid mechanics, 1998-01, Vol.355, p.113-138</ispartof><rights>1998 Cambridge University Press</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-fa3c919c2f295a4f5a4bc22301d304970138859c10d303335068312fd83935723</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112097007751/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2150120$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>WHITE, BENJAMIN S.</creatorcontrib><creatorcontrib>FORNBERG, BENGT</creatorcontrib><title>On the chance of freak waves at sea</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>When deep-water surface gravity waves traverse an
area with a curved or otherwise
variable current, the current can act analogously to an
optical lens, to focus wave
action into a caustic region. In this region, waves of
surprisingly large size, alternatively
called freak, rogue, or giant waves are produced. We show
how this mechanism
produces freak waves at random locations when ocean swell
traverses an area of
random current. When the current has a constant (possibly
zero) mean with small
random fluctuations, we show that the probability distribution
for the formation of a
freak wave is universal, that is, it does not depend on
the statistics of the current, but
only on a single distance scale parameter, provided that
this parameter is finite and
non-zero. Our numerical simulations show excellent agreement
with the theory, even
for current standard deviation as large as
1.0 m s−1. Since many of these results are
derived for arbitrary dispersion relations with certain
general properties, they include
as a special case previously published work on caustics
in geometrical optics.</description><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Physics of the oceans</subject><subject>Surface waves, tides and sea level. Seiches</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp9j81LAzEQxYMoWKt_gLcFva7OZDab3aMU7UqLRavnkKaJ3X6TrF__vVlaehE8DMPwfm94j7FLhBsElLdjAM4ROZQSQEqBR6yDWV6mMs_EMeu0ctrqp-wshDkAUkQ77Gq0TpqZTcxMr41NNi5x3upF8qU_bUh0kwSrz9mJ08tgL_a7y94e7l97VToc9R97d8PUZBya1GkyJZaGO14Knbk4E8M5AU4JspgLqShEaRDiTUQC8oKQu2lBJQnJqctw99f4TQjeOrX19Ur7H4Wg2pbqT8voud55tjoYvXQ-1qjDwchRQMQjlu6wOjT2-yBrv1C5JClU3n9Wg8FLNX6iSlWRp30UvZr4evpu1Xzz4dex_j9hfgHYhmtL</recordid><startdate>19980125</startdate><enddate>19980125</enddate><creator>WHITE, BENJAMIN S.</creator><creator>FORNBERG, BENGT</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19980125</creationdate><title>On the chance of freak waves at sea</title><author>WHITE, BENJAMIN S. ; FORNBERG, BENGT</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-fa3c919c2f295a4f5a4bc22301d304970138859c10d303335068312fd83935723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Physics of the oceans</topic><topic>Surface waves, tides and sea level. Seiches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WHITE, BENJAMIN S.</creatorcontrib><creatorcontrib>FORNBERG, BENGT</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WHITE, BENJAMIN S.</au><au>FORNBERG, BENGT</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the chance of freak waves at sea</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>1998-01-25</date><risdate>1998</risdate><volume>355</volume><spage>113</spage><epage>138</epage><pages>113-138</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>When deep-water surface gravity waves traverse an
area with a curved or otherwise
variable current, the current can act analogously to an
optical lens, to focus wave
action into a caustic region. In this region, waves of
surprisingly large size, alternatively
called freak, rogue, or giant waves are produced. We show
how this mechanism
produces freak waves at random locations when ocean swell
traverses an area of
random current. When the current has a constant (possibly
zero) mean with small
random fluctuations, we show that the probability distribution
for the formation of a
freak wave is universal, that is, it does not depend on
the statistics of the current, but
only on a single distance scale parameter, provided that
this parameter is finite and
non-zero. Our numerical simulations show excellent agreement
with the theory, even
for current standard deviation as large as
1.0 m s−1. Since many of these results are
derived for arbitrary dispersion relations with certain
general properties, they include
as a special case previously published work on caustics
in geometrical optics.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112097007751</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 1998-01, Vol.355, p.113-138 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_crossref_primary_10_1017_S0022112097007751 |
source | Cambridge Journals Online |
subjects | Earth, ocean, space Exact sciences and technology External geophysics Physics of the oceans Surface waves, tides and sea level. Seiches |
title | On the chance of freak waves at sea |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20chance%20of%20freak%20waves%20at%20sea&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=WHITE,%20BENJAMIN%20S.&rft.date=1998-01-25&rft.volume=355&rft.spage=113&rft.epage=138&rft.pages=113-138&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112097007751&rft_dat=%3Ccambridge_cross%3E10_1017_S0022112097007751%3C/cambridge_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-fa3c919c2f295a4f5a4bc22301d304970138859c10d303335068312fd83935723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0022112097007751&rfr_iscdi=true |