Loading…
A general formula for the size of the mode-coupling region
Mode coupling takes place in a small, but non-zero, region around the coupling point. A general formula for the size of this coupling region is given. This formula is valid for anisotropic absorbing media with the inhomogenity in one direction and for a linear system of wave equations with an arbitr...
Saved in:
Published in: | Journal of plasma physics 1999-10, Vol.62 (4), p.461-471 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 471 |
container_issue | 4 |
container_start_page | 461 |
container_title | Journal of plasma physics |
container_volume | 62 |
creator | SABZEVARI, BIJAN Sh |
description | Mode coupling takes place in a small, but non-zero, region around the
coupling point. A general formula for the size of this coupling region is given.
This formula is valid for anisotropic absorbing media with the inhomogenity in
one direction and for a linear system of wave equations with an arbitrary
number of fields and of arbitrary order; i.e. an arbitrary number of waves can
couple and an arbitrary number of coupling points can coalesce. It is shown
that the size is dependent on the number of modes that exist in the medium and
the number of coupling points that coalesce. The formula is applied to some
examples. A peculiar result that the formula shows is that as the temperature
approaches infinity, the size of the mode-coupling region approaches a constant
finite value, and in certain cases this size approaches zero; i.e. in these cases of
extremely high temperature, mode coupling eventually vanishes. |
doi_str_mv | 10.1017/S0022377899008053 |
format | article |
fullrecord | <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0022377899008053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022377899008053</cupid><sourcerecordid>10_1017_S0022377899008053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-4a90188c6018b3915b51168121884802ec0c66a9ae38ff219373cbc1d17f248b3</originalsourceid><addsrcrecordid>eNp9T8tOwzAQtBBIlMIHcMuBq2FtJ35wqypakCpBeVy4WI5rh5Q8KruVCl9PQis4IHHZWe3MrGYQOidwSYCIqycASpkQUikACRk7QAOScoWFBHGIBj2Ne_4YncS4BAAGVAzQ9SgpXOOCqRLfhnpTmR6T9ZtLYvnpktZ_73W7cNi2m1VVNkUSXFG2zSk68qaK7myPQ_QyuXke3-LZ_fRuPJphy4CvcWoUECkt72bOFMnyjBAuCe2OqQTqLFjOjTKOSe8pUUwwm1uyIMLTtLMMEdn9taGNMTivV6GsTfjQBHRfXv8p33kudp6VidZUPpjGlvHXSIGrtJfhnayMa7f9oU1411wwkWk-nev5TD5OXh-knnd6to9i6jyUi8LpZbsJTVf_nzBflQV1Ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A general formula for the size of the mode-coupling region</title><source>Cambridge University Press</source><creator>SABZEVARI, BIJAN Sh</creator><creatorcontrib>SABZEVARI, BIJAN Sh</creatorcontrib><description>Mode coupling takes place in a small, but non-zero, region around the
coupling point. A general formula for the size of this coupling region is given.
This formula is valid for anisotropic absorbing media with the inhomogenity in
one direction and for a linear system of wave equations with an arbitrary
number of fields and of arbitrary order; i.e. an arbitrary number of waves can
couple and an arbitrary number of coupling points can coalesce. It is shown
that the size is dependent on the number of modes that exist in the medium and
the number of coupling points that coalesce. The formula is applied to some
examples. A peculiar result that the formula shows is that as the temperature
approaches infinity, the size of the mode-coupling region approaches a constant
finite value, and in certain cases this size approaches zero; i.e. in these cases of
extremely high temperature, mode coupling eventually vanishes.</description><identifier>ISSN: 0022-3778</identifier><identifier>EISSN: 1469-7807</identifier><identifier>DOI: 10.1017/S0022377899008053</identifier><identifier>CODEN: JPLPBZ</identifier><language>eng</language><publisher>London: Cambridge University Press</publisher><subject>Exact sciences and technology ; Magnetic confinement and equilibrium ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Waves, oscillations, and instabilities in plasmas and intense beams</subject><ispartof>Journal of plasma physics, 1999-10, Vol.62 (4), p.461-471</ispartof><rights>1999 Cambridge University Press</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022377899008053/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1206943$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SABZEVARI, BIJAN Sh</creatorcontrib><title>A general formula for the size of the mode-coupling region</title><title>Journal of plasma physics</title><addtitle>J. Plasma Phys</addtitle><description>Mode coupling takes place in a small, but non-zero, region around the
coupling point. A general formula for the size of this coupling region is given.
This formula is valid for anisotropic absorbing media with the inhomogenity in
one direction and for a linear system of wave equations with an arbitrary
number of fields and of arbitrary order; i.e. an arbitrary number of waves can
couple and an arbitrary number of coupling points can coalesce. It is shown
that the size is dependent on the number of modes that exist in the medium and
the number of coupling points that coalesce. The formula is applied to some
examples. A peculiar result that the formula shows is that as the temperature
approaches infinity, the size of the mode-coupling region approaches a constant
finite value, and in certain cases this size approaches zero; i.e. in these cases of
extremely high temperature, mode coupling eventually vanishes.</description><subject>Exact sciences and technology</subject><subject>Magnetic confinement and equilibrium</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Waves, oscillations, and instabilities in plasmas and intense beams</subject><issn>0022-3778</issn><issn>1469-7807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp9T8tOwzAQtBBIlMIHcMuBq2FtJ35wqypakCpBeVy4WI5rh5Q8KruVCl9PQis4IHHZWe3MrGYQOidwSYCIqycASpkQUikACRk7QAOScoWFBHGIBj2Ne_4YncS4BAAGVAzQ9SgpXOOCqRLfhnpTmR6T9ZtLYvnpktZ_73W7cNi2m1VVNkUSXFG2zSk68qaK7myPQ_QyuXke3-LZ_fRuPJphy4CvcWoUECkt72bOFMnyjBAuCe2OqQTqLFjOjTKOSe8pUUwwm1uyIMLTtLMMEdn9taGNMTivV6GsTfjQBHRfXv8p33kudp6VidZUPpjGlvHXSIGrtJfhnayMa7f9oU1411wwkWk-nev5TD5OXh-knnd6to9i6jyUi8LpZbsJTVf_nzBflQV1Ug</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>SABZEVARI, BIJAN Sh</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19991001</creationdate><title>A general formula for the size of the mode-coupling region</title><author>SABZEVARI, BIJAN Sh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-4a90188c6018b3915b51168121884802ec0c66a9ae38ff219373cbc1d17f248b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Exact sciences and technology</topic><topic>Magnetic confinement and equilibrium</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Waves, oscillations, and instabilities in plasmas and intense beams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SABZEVARI, BIJAN Sh</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of plasma physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SABZEVARI, BIJAN Sh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A general formula for the size of the mode-coupling region</atitle><jtitle>Journal of plasma physics</jtitle><addtitle>J. Plasma Phys</addtitle><date>1999-10-01</date><risdate>1999</risdate><volume>62</volume><issue>4</issue><spage>461</spage><epage>471</epage><pages>461-471</pages><issn>0022-3778</issn><eissn>1469-7807</eissn><coden>JPLPBZ</coden><abstract>Mode coupling takes place in a small, but non-zero, region around the
coupling point. A general formula for the size of this coupling region is given.
This formula is valid for anisotropic absorbing media with the inhomogenity in
one direction and for a linear system of wave equations with an arbitrary
number of fields and of arbitrary order; i.e. an arbitrary number of waves can
couple and an arbitrary number of coupling points can coalesce. It is shown
that the size is dependent on the number of modes that exist in the medium and
the number of coupling points that coalesce. The formula is applied to some
examples. A peculiar result that the formula shows is that as the temperature
approaches infinity, the size of the mode-coupling region approaches a constant
finite value, and in certain cases this size approaches zero; i.e. in these cases of
extremely high temperature, mode coupling eventually vanishes.</abstract><cop>London</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022377899008053</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3778 |
ispartof | Journal of plasma physics, 1999-10, Vol.62 (4), p.461-471 |
issn | 0022-3778 1469-7807 |
language | eng |
recordid | cdi_crossref_primary_10_1017_S0022377899008053 |
source | Cambridge University Press |
subjects | Exact sciences and technology Magnetic confinement and equilibrium Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges Waves, oscillations, and instabilities in plasmas and intense beams |
title | A general formula for the size of the mode-coupling region |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A14%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20general%20formula%20for%20the%20size%20of%20the%20mode-coupling%20region&rft.jtitle=Journal%20of%20plasma%20physics&rft.au=SABZEVARI,%20BIJAN%20Sh&rft.date=1999-10-01&rft.volume=62&rft.issue=4&rft.spage=461&rft.epage=471&rft.pages=461-471&rft.issn=0022-3778&rft.eissn=1469-7807&rft.coden=JPLPBZ&rft_id=info:doi/10.1017/S0022377899008053&rft_dat=%3Ccambridge_cross%3E10_1017_S0022377899008053%3C/cambridge_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-4a90188c6018b3915b51168121884802ec0c66a9ae38ff219373cbc1d17f248b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0022377899008053&rfr_iscdi=true |