Loading…

Surface and Underground Ultra Low-Level Liquid Scintillation Spectrometry

Cosmic background and its variation have been removed in the Gran Sasso National Laboratory (National Institute of Nuclear Physics) by its 1400-m rock overburden. Stable, high-performance liquid scintillation counting conditions are obtained when any remaining variable components of the environmenta...

Full description

Saved in:
Bibliographic Details
Published in:Radiocarbon 2004, Vol.46 (1), p.97-104
Main Authors: Plastino, Wolfango, Kaihola, Lauri
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cosmic background and its variation have been removed in the Gran Sasso National Laboratory (National Institute of Nuclear Physics) by its 1400-m rock overburden. Stable, high-performance liquid scintillation counting conditions are obtained when any remaining variable components of the environmental background, such as radon, are eliminated. The ultra low-level liquid scintillation spectrometer Quantulus™ has an anti-Compton guard detector (guard for short) that allows monitoring of gamma radiation in the background. The guard detector efficiency in radiocarbon background reduction is 8% in the Gran Sasso National Laboratory, while 80% is observed in surface laboratories. Thus, atmospheric pressure variations in surface laboratories cause variation in cosmic radiation flux. The Quantulus anti-Compton detector is highly efficient in detecting cosmic radiation, and the sample count rate remains stable in long-term counting. Also, correlation of sample backgrounds with environmental gamma radiation in various laboratories is examined.
ISSN:0033-8222
1945-5755
DOI:10.1017/S0033822200039400