Loading…
Weed Seedbanks of the U.S. Corn Belt: Magnitude, Variation, Emergence, and Application
Seedbanks and seedling emergence of annual weeds were examined in arable fields at eight locations in the Corn Belt. Seed densities were estimated by direct seed extraction from each of several soil cores in each sampled plot. Average total seedbank densities ranged from 600 to 162 000 viable seed m...
Saved in:
Published in: | Weed science 1992-12, Vol.40 (4), p.636-644 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Seedbanks and seedling emergence of annual weeds were examined in arable fields at eight locations in the Corn Belt. Seed densities were estimated by direct seed extraction from each of several soil cores in each sampled plot. Average total seedbank densities ranged from 600 to 162 000 viable seed m-2 among locations. Coefficients of variation (CV) typically exceeded 50%. CV for seed densities of individual species usually exceeded 100%, indicating strongly aggregated distributions. CV were lower for species with dense seed populations than those with sparse seed populations. Variance of total seedbank densities was unstable when < 10 cores were examined per plot, but stabilized at all locations when ≥ 15 cores were analyzed, despite a 12-fold difference in plot size and 270-fold difference in seed density among locations. Percentage viable seed that emerged as seedlings in field plots ranged from < 1% for yellow rocket to 30% for giant foxtail. Redroot pigweed and common lambsquarters were the most frequently encountered species. Emergence percentages of these species were related inversely to rainfall or air temperatures in April or May, presumably because anoxia and/or high temperatures induced secondary dormancy in nondormant seed. From 50 to 90% of total seed in the seedbank were dead. This information can be employed by bioeconomic weed management models, which currently use coarse estimates of emergence percentages to customize recommendations for weed control. |
---|---|
ISSN: | 0043-1745 1550-2759 |
DOI: | 10.1017/S0043174500058240 |