Loading…

Active learning of the collision distance function for high-DOF multi-arm robot systems

Motion planning for high-DOF multi-arm systems operating in complex environments remains a challenging problem, with many motion planning algorithms requiring evaluation of the minimum collision distance and its derivative. Because of the computational complexity of calculating the collision distanc...

Full description

Saved in:
Bibliographic Details
Published in:Robotica 2024-01, p.1-15
Main Authors: Kim, Jihwan, Park, Frank Chongwoo
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-9b15f686ad3292d6cfad15afb3e6e5e7e04458c24fc35ddd22f9b639e715f0763
cites cdi_FETCH-LOGICAL-c288t-9b15f686ad3292d6cfad15afb3e6e5e7e04458c24fc35ddd22f9b639e715f0763
container_end_page 15
container_issue
container_start_page 1
container_title Robotica
container_volume
creator Kim, Jihwan
Park, Frank Chongwoo
description Motion planning for high-DOF multi-arm systems operating in complex environments remains a challenging problem, with many motion planning algorithms requiring evaluation of the minimum collision distance and its derivative. Because of the computational complexity of calculating the collision distance, recent methods have attempted to leverage data-driven machine learning methods to learn the collision distance. Because of the significant training dataset requirements for high-DOF robots, existing kernel-based methods, which require $O(N^2)$ memory and computation resources, where $N$ denotes the number of dataset points, often perform poorly. This paper proposes a new active learning method for learning the collision distance function that overcomes the limitations of existing methods: (i) the size of the training dataset remains fixed, with the dataset containing more points near the collision boundary as learning proceeds, and (ii) calculating collision distances in the higher-dimensional link $SE(3)^n$ configuration space – here $n$ denotes the number of links – leads to more accurate and robust collision distance function learning. Performance evaluations with high-DOF multi-arm robot systems demonstrate the advantages of the proposed active learning-based strategy vis- $\grave{\text{a}}$ -vis existing learning-based methods.
doi_str_mv 10.1017/S0263574723001790
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0263574723001790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_S0263574723001790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-9b15f686ad3292d6cfad15afb3e6e5e7e04458c24fc35ddd22f9b639e715f0763</originalsourceid><addsrcrecordid>eNplUEtKxDAADaJgHT2Au1wgmn_a5TA6KgzMQsVlSfOZRtpGkowwt7dFd64e77t4ANwSfEcwUfevmEomFFeU4Zk3-AxUhMsG1VLW56BabLT4l-Aq5885wwhXFfhYmxK-HRycTlOYDjB6WHoHTRyGkEOcoA256Mk46I_TnJ0VHxPsw6FHD_stHI9DCUinEabYxQLzKRc35mtw4fWQ3c0frsD79vFt84x2-6eXzXqHDK3rgpqOCC9rqS2jDbXSeG2J0L5jTjrhlMOci9pQ7g0T1lpKfdNJ1jg197CSbAXI765JMefkfPuVwqjTqSW4XZ5p_z3DfgBX5Fc-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Active learning of the collision distance function for high-DOF multi-arm robot systems</title><source>Cambridge University Press</source><creator>Kim, Jihwan ; Park, Frank Chongwoo</creator><creatorcontrib>Kim, Jihwan ; Park, Frank Chongwoo</creatorcontrib><description>Motion planning for high-DOF multi-arm systems operating in complex environments remains a challenging problem, with many motion planning algorithms requiring evaluation of the minimum collision distance and its derivative. Because of the computational complexity of calculating the collision distance, recent methods have attempted to leverage data-driven machine learning methods to learn the collision distance. Because of the significant training dataset requirements for high-DOF robots, existing kernel-based methods, which require $O(N^2)$ memory and computation resources, where $N$ denotes the number of dataset points, often perform poorly. This paper proposes a new active learning method for learning the collision distance function that overcomes the limitations of existing methods: (i) the size of the training dataset remains fixed, with the dataset containing more points near the collision boundary as learning proceeds, and (ii) calculating collision distances in the higher-dimensional link $SE(3)^n$ configuration space – here $n$ denotes the number of links – leads to more accurate and robust collision distance function learning. Performance evaluations with high-DOF multi-arm robot systems demonstrate the advantages of the proposed active learning-based strategy vis- $\grave{\text{a}}$ -vis existing learning-based methods.</description><identifier>ISSN: 0263-5747</identifier><identifier>EISSN: 1469-8668</identifier><identifier>DOI: 10.1017/S0263574723001790</identifier><language>eng</language><ispartof>Robotica, 2024-01, p.1-15</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-9b15f686ad3292d6cfad15afb3e6e5e7e04458c24fc35ddd22f9b639e715f0763</citedby><cites>FETCH-LOGICAL-c288t-9b15f686ad3292d6cfad15afb3e6e5e7e04458c24fc35ddd22f9b639e715f0763</cites><orcidid>0000-0002-9577-1304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kim, Jihwan</creatorcontrib><creatorcontrib>Park, Frank Chongwoo</creatorcontrib><title>Active learning of the collision distance function for high-DOF multi-arm robot systems</title><title>Robotica</title><description>Motion planning for high-DOF multi-arm systems operating in complex environments remains a challenging problem, with many motion planning algorithms requiring evaluation of the minimum collision distance and its derivative. Because of the computational complexity of calculating the collision distance, recent methods have attempted to leverage data-driven machine learning methods to learn the collision distance. Because of the significant training dataset requirements for high-DOF robots, existing kernel-based methods, which require $O(N^2)$ memory and computation resources, where $N$ denotes the number of dataset points, often perform poorly. This paper proposes a new active learning method for learning the collision distance function that overcomes the limitations of existing methods: (i) the size of the training dataset remains fixed, with the dataset containing more points near the collision boundary as learning proceeds, and (ii) calculating collision distances in the higher-dimensional link $SE(3)^n$ configuration space – here $n$ denotes the number of links – leads to more accurate and robust collision distance function learning. Performance evaluations with high-DOF multi-arm robot systems demonstrate the advantages of the proposed active learning-based strategy vis- $\grave{\text{a}}$ -vis existing learning-based methods.</description><issn>0263-5747</issn><issn>1469-8668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNplUEtKxDAADaJgHT2Au1wgmn_a5TA6KgzMQsVlSfOZRtpGkowwt7dFd64e77t4ANwSfEcwUfevmEomFFeU4Zk3-AxUhMsG1VLW56BabLT4l-Aq5885wwhXFfhYmxK-HRycTlOYDjB6WHoHTRyGkEOcoA256Mk46I_TnJ0VHxPsw6FHD_stHI9DCUinEabYxQLzKRc35mtw4fWQ3c0frsD79vFt84x2-6eXzXqHDK3rgpqOCC9rqS2jDbXSeG2J0L5jTjrhlMOci9pQ7g0T1lpKfdNJ1jg197CSbAXI765JMefkfPuVwqjTqSW4XZ5p_z3DfgBX5Fc-</recordid><startdate>20240112</startdate><enddate>20240112</enddate><creator>Kim, Jihwan</creator><creator>Park, Frank Chongwoo</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9577-1304</orcidid></search><sort><creationdate>20240112</creationdate><title>Active learning of the collision distance function for high-DOF multi-arm robot systems</title><author>Kim, Jihwan ; Park, Frank Chongwoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-9b15f686ad3292d6cfad15afb3e6e5e7e04458c24fc35ddd22f9b639e715f0763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jihwan</creatorcontrib><creatorcontrib>Park, Frank Chongwoo</creatorcontrib><collection>CrossRef</collection><jtitle>Robotica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jihwan</au><au>Park, Frank Chongwoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active learning of the collision distance function for high-DOF multi-arm robot systems</atitle><jtitle>Robotica</jtitle><date>2024-01-12</date><risdate>2024</risdate><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0263-5747</issn><eissn>1469-8668</eissn><abstract>Motion planning for high-DOF multi-arm systems operating in complex environments remains a challenging problem, with many motion planning algorithms requiring evaluation of the minimum collision distance and its derivative. Because of the computational complexity of calculating the collision distance, recent methods have attempted to leverage data-driven machine learning methods to learn the collision distance. Because of the significant training dataset requirements for high-DOF robots, existing kernel-based methods, which require $O(N^2)$ memory and computation resources, where $N$ denotes the number of dataset points, often perform poorly. This paper proposes a new active learning method for learning the collision distance function that overcomes the limitations of existing methods: (i) the size of the training dataset remains fixed, with the dataset containing more points near the collision boundary as learning proceeds, and (ii) calculating collision distances in the higher-dimensional link $SE(3)^n$ configuration space – here $n$ denotes the number of links – leads to more accurate and robust collision distance function learning. Performance evaluations with high-DOF multi-arm robot systems demonstrate the advantages of the proposed active learning-based strategy vis- $\grave{\text{a}}$ -vis existing learning-based methods.</abstract><doi>10.1017/S0263574723001790</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9577-1304</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0263-5747
ispartof Robotica, 2024-01, p.1-15
issn 0263-5747
1469-8668
language eng
recordid cdi_crossref_primary_10_1017_S0263574723001790
source Cambridge University Press
title Active learning of the collision distance function for high-DOF multi-arm robot systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20learning%20of%20the%20collision%20distance%20function%20for%20high-DOF%20multi-arm%20robot%20systems&rft.jtitle=Robotica&rft.au=Kim,%20Jihwan&rft.date=2024-01-12&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0263-5747&rft.eissn=1469-8668&rft_id=info:doi/10.1017/S0263574723001790&rft_dat=%3Ccrossref%3E10_1017_S0263574723001790%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-9b15f686ad3292d6cfad15afb3e6e5e7e04458c24fc35ddd22f9b639e715f0763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true