Loading…

Immunoassays to detect and quantitate herbicides in the environment

Immunochemical techniques offer many advantages over chromatographic methods used for pesticide trace analysis of substrates such as soil, water, plants, urine, and blood. These advantages include speed of processing samples, high specificity for detecting a pesticide, reduced amount of preparation...

Full description

Saved in:
Bibliographic Details
Published in:Weed technology 1990-04, Vol.4 (2), p.226-234
Main Authors: Hall, J.C. (Univ. Guelph, Guelph, Ont., Canada), Deschamps, R.J.A, McDermott, M.R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Immunochemical techniques offer many advantages over chromatographic methods used for pesticide trace analysis of substrates such as soil, water, plants, urine, and blood. These advantages include speed of processing samples, high specificity for detecting a pesticide, reduced amount of preparation and cleanup of the sample before analysis, and a dramatic increase in the number of samples that can be analyzed. Immunoassays are based on the principle that antibodies to pesticides can be prepared, in animals, that can recognize and attach with exquisite specificity to certain chemical configurations displayed on the surface of a molecule. Small molecules such as herbicides usually are not immunogenic but can be made so by chemically bonding them to a large immunogenic protein such as bovine serum blbumin before injection into an animal. Development of herbicide-specific antibodies and their use in direct and indirect enzyme-linked immunosorbent assays (EIA or ELISA) as well as radioimmunoassays (RIA) are discussed. The principles behind monoclonal antibody production are outlined, and immunoassays using polyclonal and monoclonal antibodies are compared. Specific reference is made to the development and use of indirect ELISA and RIA procedures for trace analysis of 2,4-D and picloram.
ISSN:0890-037X
1550-2740
DOI:10.1017/S0890037X00025318