Loading…

Finiteness properties of the category of mod p representations of

We establish the Bernstein-centre type of results for the category of mod p representations of $\operatorname {\mathrm {GL}}_2 (\mathbb {Q}_p)$ . We treat all the remaining open cases, which occur when p is $2$ or $3$ . Our arguments carry over for all primes p . This allows us to remove the restric...

Full description

Saved in:
Bibliographic Details
Published in:Forum of mathematics. Sigma 2021-12, Vol.9, Article e80
Main Authors: Paškūnas, Vytautas, Tung, Shen-Ning
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1852-cb2f956f78e579f7123a2082c9559b6a2627e0fad788bd5930e741e566d6fb443
cites cdi_FETCH-LOGICAL-c1852-cb2f956f78e579f7123a2082c9559b6a2627e0fad788bd5930e741e566d6fb443
container_end_page
container_issue
container_start_page
container_title Forum of mathematics. Sigma
container_volume 9
creator Paškūnas, Vytautas
Tung, Shen-Ning
description We establish the Bernstein-centre type of results for the category of mod p representations of $\operatorname {\mathrm {GL}}_2 (\mathbb {Q}_p)$ . We treat all the remaining open cases, which occur when p is $2$ or $3$ . Our arguments carry over for all primes p . This allows us to remove the restrictions on the residual representation at p in Lue Pan’s recent proof of the Fontaine–Mazur conjecture for Hodge–Tate representations of $\operatorname {\mathrm {Gal}}(\overline {\mathbb Q}/\mathbb {Q})$ with equal Hodge–Tate weights.
doi_str_mv 10.1017/fms.2021.72
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_fms_2021_72</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_fms_2021_72</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1852-cb2f956f78e579f7123a2082c9559b6a2627e0fad788bd5930e741e566d6fb443</originalsourceid><addsrcrecordid>eNpNkMFKxDAURYMoOIyz8geyl9aX1yavXQ6Do8KAG12HtH3Rim1Kks38vRZduLr3wuEujhC3CkoFiu79lEoEVCXhhdggaCg0tPXlv34tdil9AoBSSJpoI_bHcR4zz5ySXGJYOOaRkwxe5g-Wvcv8HuJ53VMY5CIjL5ETz9nlMcwreCOuvPtKvPvLrXg7PrwenorTy-PzYX8qetVoLPoOfauNp4Y1tZ4UVg6hwb7Vuu2MQ4PE4N1ATdMNuq2AqVasjRmM7-q62oq7398-hpQie7vEcXLxbBXYVYD9EWBXAZaw-garj027</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Finiteness properties of the category of mod p representations of</title><source>Cambridge University Press journals</source><creator>Paškūnas, Vytautas ; Tung, Shen-Ning</creator><creatorcontrib>Paškūnas, Vytautas ; Tung, Shen-Ning</creatorcontrib><description>We establish the Bernstein-centre type of results for the category of mod p representations of $\operatorname {\mathrm {GL}}_2 (\mathbb {Q}_p)$ . We treat all the remaining open cases, which occur when p is $2$ or $3$ . Our arguments carry over for all primes p . This allows us to remove the restrictions on the residual representation at p in Lue Pan’s recent proof of the Fontaine–Mazur conjecture for Hodge–Tate representations of $\operatorname {\mathrm {Gal}}(\overline {\mathbb Q}/\mathbb {Q})$ with equal Hodge–Tate weights.</description><identifier>ISSN: 2050-5094</identifier><identifier>EISSN: 2050-5094</identifier><identifier>DOI: 10.1017/fms.2021.72</identifier><language>eng</language><ispartof>Forum of mathematics. Sigma, 2021-12, Vol.9, Article e80</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1852-cb2f956f78e579f7123a2082c9559b6a2627e0fad788bd5930e741e566d6fb443</citedby><cites>FETCH-LOGICAL-c1852-cb2f956f78e579f7123a2082c9559b6a2627e0fad788bd5930e741e566d6fb443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Paškūnas, Vytautas</creatorcontrib><creatorcontrib>Tung, Shen-Ning</creatorcontrib><title>Finiteness properties of the category of mod p representations of</title><title>Forum of mathematics. Sigma</title><description>We establish the Bernstein-centre type of results for the category of mod p representations of $\operatorname {\mathrm {GL}}_2 (\mathbb {Q}_p)$ . We treat all the remaining open cases, which occur when p is $2$ or $3$ . Our arguments carry over for all primes p . This allows us to remove the restrictions on the residual representation at p in Lue Pan’s recent proof of the Fontaine–Mazur conjecture for Hodge–Tate representations of $\operatorname {\mathrm {Gal}}(\overline {\mathbb Q}/\mathbb {Q})$ with equal Hodge–Tate weights.</description><issn>2050-5094</issn><issn>2050-5094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkMFKxDAURYMoOIyz8geyl9aX1yavXQ6Do8KAG12HtH3Rim1Kks38vRZduLr3wuEujhC3CkoFiu79lEoEVCXhhdggaCg0tPXlv34tdil9AoBSSJpoI_bHcR4zz5ySXGJYOOaRkwxe5g-Wvcv8HuJ53VMY5CIjL5ETz9nlMcwreCOuvPtKvPvLrXg7PrwenorTy-PzYX8qetVoLPoOfauNp4Y1tZ4UVg6hwb7Vuu2MQ4PE4N1ATdMNuq2AqVasjRmM7-q62oq7398-hpQie7vEcXLxbBXYVYD9EWBXAZaw-garj027</recordid><startdate>20211209</startdate><enddate>20211209</enddate><creator>Paškūnas, Vytautas</creator><creator>Tung, Shen-Ning</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211209</creationdate><title>Finiteness properties of the category of mod p representations of</title><author>Paškūnas, Vytautas ; Tung, Shen-Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1852-cb2f956f78e579f7123a2082c9559b6a2627e0fad788bd5930e741e566d6fb443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paškūnas, Vytautas</creatorcontrib><creatorcontrib>Tung, Shen-Ning</creatorcontrib><collection>CrossRef</collection><jtitle>Forum of mathematics. Sigma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paškūnas, Vytautas</au><au>Tung, Shen-Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finiteness properties of the category of mod p representations of</atitle><jtitle>Forum of mathematics. Sigma</jtitle><date>2021-12-09</date><risdate>2021</risdate><volume>9</volume><artnum>e80</artnum><issn>2050-5094</issn><eissn>2050-5094</eissn><abstract>We establish the Bernstein-centre type of results for the category of mod p representations of $\operatorname {\mathrm {GL}}_2 (\mathbb {Q}_p)$ . We treat all the remaining open cases, which occur when p is $2$ or $3$ . Our arguments carry over for all primes p . This allows us to remove the restrictions on the residual representation at p in Lue Pan’s recent proof of the Fontaine–Mazur conjecture for Hodge–Tate representations of $\operatorname {\mathrm {Gal}}(\overline {\mathbb Q}/\mathbb {Q})$ with equal Hodge–Tate weights.</abstract><doi>10.1017/fms.2021.72</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-5094
ispartof Forum of mathematics. Sigma, 2021-12, Vol.9, Article e80
issn 2050-5094
2050-5094
language eng
recordid cdi_crossref_primary_10_1017_fms_2021_72
source Cambridge University Press journals
title Finiteness properties of the category of mod p representations of
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T18%3A10%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finiteness%20properties%20of%20the%20category%20of%20mod%20p%20representations%20of&rft.jtitle=Forum%20of%20mathematics.%20Sigma&rft.au=Pa%C5%A1k%C5%ABnas,%20Vytautas&rft.date=2021-12-09&rft.volume=9&rft.artnum=e80&rft.issn=2050-5094&rft.eissn=2050-5094&rft_id=info:doi/10.1017/fms.2021.72&rft_dat=%3Ccrossref%3E10_1017_fms_2021_72%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1852-cb2f956f78e579f7123a2082c9559b6a2627e0fad788bd5930e741e566d6fb443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true