Loading…

Tollmien–Schlichting wave cancellation via localised heating elements in boundary layers

Instability to Tollmien–Schlichting waves is one of the primary routes to transition to turbulence for two-dimensional boundary layers in quiet disturbance environments. Cancellation of Tollmien–Schlichting waves using surface heating was first demonstrated in the experiments of Liepmann et al. (J....

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2021-02, Vol.909, Article A16
Main Authors: Brennan, G. S., Gajjar, J. S. B., Hewitt, R. E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c312t-8d2338283dbcb7c1f3191a2e0e3e279f23c1ef37d6492fc13a23e85401d4f3a53
cites cdi_FETCH-LOGICAL-c312t-8d2338283dbcb7c1f3191a2e0e3e279f23c1ef37d6492fc13a23e85401d4f3a53
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 909
creator Brennan, G. S.
Gajjar, J. S. B.
Hewitt, R. E.
description Instability to Tollmien–Schlichting waves is one of the primary routes to transition to turbulence for two-dimensional boundary layers in quiet disturbance environments. Cancellation of Tollmien–Schlichting waves using surface heating was first demonstrated in the experiments of Liepmann et al. (J. Fluid Mech., vol. 118, 1982, pp. 187–200) and Liepmann & Nosenchuck (J. Fluid Mech., vol. 118, 1982, pp. 201–204). Here we consider a similar theoretical formulation that includes the effects of localised (unsteady) wall heating/cooling. The resulting problem is closely related to that of Terent'ev (Prikl. Mat. Mekh., vol. 45, 1981, pp. 1049–1055; Prikl. Mat. Mekh., vol. 48, 1984, pp. 264–272) on the generation of Tollmien–Schlichting waves by a vibrating ribbon, but with thermal effects. The nonlinear receptivity problem based on triple-deck scales is formulated and the linearised version solved both analytically as well as numerically. The most significant result is that the wall heating/cooling function can be chosen such that there is no pressure response to the disturbance, meaning there is no generation of Tollmien–Schlichting waves. Numerical calculations substantiate this with an approximation based on the exact analytical result. Previous numerical studies of the unsteady triple-deck equations have shown difficulties in capturing the convective wave packet that develops in the initial-value problem and we show that these arise from the choice of time steps as well as the range of the Fourier modes taken.
doi_str_mv 10.1017/jfm.2020.928
format article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_jfm_2020_928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2020_928</cupid><sourcerecordid>10_1017_jfm_2020_928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-8d2338283dbcb7c1f3191a2e0e3e279f23c1ef37d6492fc13a23e85401d4f3a53</originalsourceid><addsrcrecordid>eNptkDFOwzAYhS0EEqWwcQAfgAT_dtokI6qAIlVioCwslmP_bl05DrLTom7cgRtyElLoyPSW7z09fYRcA8uBQXm7sW3OGWd5zasTMoJiWmfltJickhFjnGcAnJ2Ti5Q2jIFgdTkib8vO-9Zh-P78etFr7_S6d2FFP9QOqVZBo_eqd12gO6eo77TyLqGha1S_HHpsMfSJukCbbhuMinvq1R5juiRnVvmEV8cck9eH--Vsni2eH59md4tMC-B9VhkuRMUrYRrdlBqsgBoUR4YCeVlbLjSgFaWZFjW3GoTiAqtJwcAUVqiJGJObv10du5QiWvkeXTv8kMDkwYscvMiDFzl4GfD8iKu2ic6sUG66bQzDxf8LP974Z8I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tollmien–Schlichting wave cancellation via localised heating elements in boundary layers</title><source>Cambridge Journals Online</source><creator>Brennan, G. S. ; Gajjar, J. S. B. ; Hewitt, R. E.</creator><creatorcontrib>Brennan, G. S. ; Gajjar, J. S. B. ; Hewitt, R. E.</creatorcontrib><description>Instability to Tollmien–Schlichting waves is one of the primary routes to transition to turbulence for two-dimensional boundary layers in quiet disturbance environments. Cancellation of Tollmien–Schlichting waves using surface heating was first demonstrated in the experiments of Liepmann et al. (J. Fluid Mech., vol. 118, 1982, pp. 187–200) and Liepmann &amp; Nosenchuck (J. Fluid Mech., vol. 118, 1982, pp. 201–204). Here we consider a similar theoretical formulation that includes the effects of localised (unsteady) wall heating/cooling. The resulting problem is closely related to that of Terent'ev (Prikl. Mat. Mekh., vol. 45, 1981, pp. 1049–1055; Prikl. Mat. Mekh., vol. 48, 1984, pp. 264–272) on the generation of Tollmien–Schlichting waves by a vibrating ribbon, but with thermal effects. The nonlinear receptivity problem based on triple-deck scales is formulated and the linearised version solved both analytically as well as numerically. The most significant result is that the wall heating/cooling function can be chosen such that there is no pressure response to the disturbance, meaning there is no generation of Tollmien–Schlichting waves. Numerical calculations substantiate this with an approximation based on the exact analytical result. Previous numerical studies of the unsteady triple-deck equations have shown difficulties in capturing the convective wave packet that develops in the initial-value problem and we show that these arise from the choice of time steps as well as the range of the Fourier modes taken.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2020.928</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>JFM Papers</subject><ispartof>Journal of fluid mechanics, 2021-02, Vol.909, Article A16</ispartof><rights>The Author(s), 2020. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-8d2338283dbcb7c1f3191a2e0e3e279f23c1ef37d6492fc13a23e85401d4f3a53</citedby><cites>FETCH-LOGICAL-c312t-8d2338283dbcb7c1f3191a2e0e3e279f23c1ef37d6492fc13a23e85401d4f3a53</cites><orcidid>0000-0003-3056-1346 ; 0000-0002-4914-5716 ; 0000-0001-8744-0102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112020009283/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Brennan, G. S.</creatorcontrib><creatorcontrib>Gajjar, J. S. B.</creatorcontrib><creatorcontrib>Hewitt, R. E.</creatorcontrib><title>Tollmien–Schlichting wave cancellation via localised heating elements in boundary layers</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Instability to Tollmien–Schlichting waves is one of the primary routes to transition to turbulence for two-dimensional boundary layers in quiet disturbance environments. Cancellation of Tollmien–Schlichting waves using surface heating was first demonstrated in the experiments of Liepmann et al. (J. Fluid Mech., vol. 118, 1982, pp. 187–200) and Liepmann &amp; Nosenchuck (J. Fluid Mech., vol. 118, 1982, pp. 201–204). Here we consider a similar theoretical formulation that includes the effects of localised (unsteady) wall heating/cooling. The resulting problem is closely related to that of Terent'ev (Prikl. Mat. Mekh., vol. 45, 1981, pp. 1049–1055; Prikl. Mat. Mekh., vol. 48, 1984, pp. 264–272) on the generation of Tollmien–Schlichting waves by a vibrating ribbon, but with thermal effects. The nonlinear receptivity problem based on triple-deck scales is formulated and the linearised version solved both analytically as well as numerically. The most significant result is that the wall heating/cooling function can be chosen such that there is no pressure response to the disturbance, meaning there is no generation of Tollmien–Schlichting waves. Numerical calculations substantiate this with an approximation based on the exact analytical result. Previous numerical studies of the unsteady triple-deck equations have shown difficulties in capturing the convective wave packet that develops in the initial-value problem and we show that these arise from the choice of time steps as well as the range of the Fourier modes taken.</description><subject>JFM Papers</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkDFOwzAYhS0EEqWwcQAfgAT_dtokI6qAIlVioCwslmP_bl05DrLTom7cgRtyElLoyPSW7z09fYRcA8uBQXm7sW3OGWd5zasTMoJiWmfltJickhFjnGcAnJ2Ti5Q2jIFgdTkib8vO-9Zh-P78etFr7_S6d2FFP9QOqVZBo_eqd12gO6eo77TyLqGha1S_HHpsMfSJukCbbhuMinvq1R5juiRnVvmEV8cck9eH--Vsni2eH59md4tMC-B9VhkuRMUrYRrdlBqsgBoUR4YCeVlbLjSgFaWZFjW3GoTiAqtJwcAUVqiJGJObv10du5QiWvkeXTv8kMDkwYscvMiDFzl4GfD8iKu2ic6sUG66bQzDxf8LP974Z8I</recordid><startdate>20210225</startdate><enddate>20210225</enddate><creator>Brennan, G. S.</creator><creator>Gajjar, J. S. B.</creator><creator>Hewitt, R. E.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3056-1346</orcidid><orcidid>https://orcid.org/0000-0002-4914-5716</orcidid><orcidid>https://orcid.org/0000-0001-8744-0102</orcidid></search><sort><creationdate>20210225</creationdate><title>Tollmien–Schlichting wave cancellation via localised heating elements in boundary layers</title><author>Brennan, G. S. ; Gajjar, J. S. B. ; Hewitt, R. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-8d2338283dbcb7c1f3191a2e0e3e279f23c1ef37d6492fc13a23e85401d4f3a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>JFM Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brennan, G. S.</creatorcontrib><creatorcontrib>Gajjar, J. S. B.</creatorcontrib><creatorcontrib>Hewitt, R. E.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brennan, G. S.</au><au>Gajjar, J. S. B.</au><au>Hewitt, R. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tollmien–Schlichting wave cancellation via localised heating elements in boundary layers</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2021-02-25</date><risdate>2021</risdate><volume>909</volume><artnum>A16</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Instability to Tollmien–Schlichting waves is one of the primary routes to transition to turbulence for two-dimensional boundary layers in quiet disturbance environments. Cancellation of Tollmien–Schlichting waves using surface heating was first demonstrated in the experiments of Liepmann et al. (J. Fluid Mech., vol. 118, 1982, pp. 187–200) and Liepmann &amp; Nosenchuck (J. Fluid Mech., vol. 118, 1982, pp. 201–204). Here we consider a similar theoretical formulation that includes the effects of localised (unsteady) wall heating/cooling. The resulting problem is closely related to that of Terent'ev (Prikl. Mat. Mekh., vol. 45, 1981, pp. 1049–1055; Prikl. Mat. Mekh., vol. 48, 1984, pp. 264–272) on the generation of Tollmien–Schlichting waves by a vibrating ribbon, but with thermal effects. The nonlinear receptivity problem based on triple-deck scales is formulated and the linearised version solved both analytically as well as numerically. The most significant result is that the wall heating/cooling function can be chosen such that there is no pressure response to the disturbance, meaning there is no generation of Tollmien–Schlichting waves. Numerical calculations substantiate this with an approximation based on the exact analytical result. Previous numerical studies of the unsteady triple-deck equations have shown difficulties in capturing the convective wave packet that develops in the initial-value problem and we show that these arise from the choice of time steps as well as the range of the Fourier modes taken.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2020.928</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0003-3056-1346</orcidid><orcidid>https://orcid.org/0000-0002-4914-5716</orcidid><orcidid>https://orcid.org/0000-0001-8744-0102</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2021-02, Vol.909, Article A16
issn 0022-1120
1469-7645
language eng
recordid cdi_crossref_primary_10_1017_jfm_2020_928
source Cambridge Journals Online
subjects JFM Papers
title Tollmien–Schlichting wave cancellation via localised heating elements in boundary layers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A52%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tollmien%E2%80%93Schlichting%20wave%20cancellation%20via%20localised%20heating%20elements%20in%20boundary%20layers&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Brennan,%20G.%20S.&rft.date=2021-02-25&rft.volume=909&rft.artnum=A16&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2020.928&rft_dat=%3Ccambridge_cross%3E10_1017_jfm_2020_928%3C/cambridge_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-8d2338283dbcb7c1f3191a2e0e3e279f23c1ef37d6492fc13a23e85401d4f3a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2020_928&rfr_iscdi=true