Loading…

A linear formation-flying astronomical interferometer in low Earth orbit

Space interferometry is the inevitable end point of high angular resolution astrophysics, and a key technology that can be leveraged to analyse exoplanet formation and atmospheres with exceptional detail. However, the anticipated cost of large missions, such as Darwin and TPF-I , and inadequate tech...

Full description

Saved in:
Bibliographic Details
Published in:Publications of the Astronomical Society of Australia 2020, Vol.37, Article e019
Main Authors: Hansen, Jonah T., Ireland, Michael J.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c235t-48960fa57850ff59748ae34bff4a3b510986ec75d3acb3a7b5a924f6c6377b3e3
cites cdi_FETCH-LOGICAL-c235t-48960fa57850ff59748ae34bff4a3b510986ec75d3acb3a7b5a924f6c6377b3e3
container_end_page
container_issue
container_start_page
container_title Publications of the Astronomical Society of Australia
container_volume 37
creator Hansen, Jonah T.
Ireland, Michael J.
description Space interferometry is the inevitable end point of high angular resolution astrophysics, and a key technology that can be leveraged to analyse exoplanet formation and atmospheres with exceptional detail. However, the anticipated cost of large missions, such as Darwin and TPF-I , and inadequate technology readiness levels have resulted in limited developments since the late 2000s. Here, we present a feasibility study into a small-scale formation-flying interferometric array in low Earth orbit, which will aim to prove the technical concepts involved with space interferometry while still making unique astrophysical measurements. We will detail the proposed system architecture and metrology system, as well as present orbital simulations that show that the array should be stable enough to perform interferometry with
doi_str_mv 10.1017/pasa.2020.13
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_pasa_2020_13</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_pasa_2020_13</sourcerecordid><originalsourceid>FETCH-LOGICAL-c235t-48960fa57850ff59748ae34bff4a3b510986ec75d3acb3a7b5a924f6c6377b3e3</originalsourceid><addsrcrecordid>eNotkMFOAyEURYnRxFrd-QF8gFTgwcAsm6ZakyZudE3eIChmZmhgEtO_dya6uuds7uIQci_4RnBhHk9YcSO5nBUuyEooZVnDLVzODBIYaMuvyU2t35wL1Ui5Ioct7dMYsNCYy4BTyiOL_TmNnxTrVPKYh-Sxp2mcQomh5CHMMCvt8w_dY5m-aC5dmm7JVcS-hrv_XZP3p_3b7sCOr88vu-2ReQl6Ysq2DY-ojdU8Rt0aZTGA6mJUCJ0WvLVN8EZ_APoO0HQaW6li4xswpoMAa_Lw9-tLrrWE6E4lDVjOTnC3VHBLBbdUcALgF5rFUVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A linear formation-flying astronomical interferometer in low Earth orbit</title><source>Cambridge Journals Online</source><creator>Hansen, Jonah T. ; Ireland, Michael J.</creator><creatorcontrib>Hansen, Jonah T. ; Ireland, Michael J.</creatorcontrib><description>Space interferometry is the inevitable end point of high angular resolution astrophysics, and a key technology that can be leveraged to analyse exoplanet formation and atmospheres with exceptional detail. However, the anticipated cost of large missions, such as Darwin and TPF-I , and inadequate technology readiness levels have resulted in limited developments since the late 2000s. Here, we present a feasibility study into a small-scale formation-flying interferometric array in low Earth orbit, which will aim to prove the technical concepts involved with space interferometry while still making unique astrophysical measurements. We will detail the proposed system architecture and metrology system, as well as present orbital simulations that show that the array should be stable enough to perform interferometry with &lt;50 m s –1 yr –1 delta-v and one thruster per spacecraft. We also conduct observability simulations to identify which parts of the sky are visible for a given orbital configuration. We conclude with optimism that this design is achievable, but a more detailed control simulation factoring in a demonstrated metrology system is the next step to demonstrate full mission feasibility.</description><identifier>ISSN: 1323-3580</identifier><identifier>EISSN: 1448-6083</identifier><identifier>DOI: 10.1017/pasa.2020.13</identifier><language>eng</language><ispartof>Publications of the Astronomical Society of Australia, 2020, Vol.37, Article e019</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c235t-48960fa57850ff59748ae34bff4a3b510986ec75d3acb3a7b5a924f6c6377b3e3</citedby><cites>FETCH-LOGICAL-c235t-48960fa57850ff59748ae34bff4a3b510986ec75d3acb3a7b5a924f6c6377b3e3</cites><orcidid>0000-0003-3992-342X ; 0000-0002-6194-043X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27921,27922,27923</link.rule.ids></links><search><creatorcontrib>Hansen, Jonah T.</creatorcontrib><creatorcontrib>Ireland, Michael J.</creatorcontrib><title>A linear formation-flying astronomical interferometer in low Earth orbit</title><title>Publications of the Astronomical Society of Australia</title><description>Space interferometry is the inevitable end point of high angular resolution astrophysics, and a key technology that can be leveraged to analyse exoplanet formation and atmospheres with exceptional detail. However, the anticipated cost of large missions, such as Darwin and TPF-I , and inadequate technology readiness levels have resulted in limited developments since the late 2000s. Here, we present a feasibility study into a small-scale formation-flying interferometric array in low Earth orbit, which will aim to prove the technical concepts involved with space interferometry while still making unique astrophysical measurements. We will detail the proposed system architecture and metrology system, as well as present orbital simulations that show that the array should be stable enough to perform interferometry with &lt;50 m s –1 yr –1 delta-v and one thruster per spacecraft. We also conduct observability simulations to identify which parts of the sky are visible for a given orbital configuration. We conclude with optimism that this design is achievable, but a more detailed control simulation factoring in a demonstrated metrology system is the next step to demonstrate full mission feasibility.</description><issn>1323-3580</issn><issn>1448-6083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkMFOAyEURYnRxFrd-QF8gFTgwcAsm6ZakyZudE3eIChmZmhgEtO_dya6uuds7uIQci_4RnBhHk9YcSO5nBUuyEooZVnDLVzODBIYaMuvyU2t35wL1Ui5Ioct7dMYsNCYy4BTyiOL_TmNnxTrVPKYh-Sxp2mcQomh5CHMMCvt8w_dY5m-aC5dmm7JVcS-hrv_XZP3p_3b7sCOr88vu-2ReQl6Ysq2DY-ojdU8Rt0aZTGA6mJUCJ0WvLVN8EZ_APoO0HQaW6li4xswpoMAa_Lw9-tLrrWE6E4lDVjOTnC3VHBLBbdUcALgF5rFUVw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Hansen, Jonah T.</creator><creator>Ireland, Michael J.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3992-342X</orcidid><orcidid>https://orcid.org/0000-0002-6194-043X</orcidid></search><sort><creationdate>2020</creationdate><title>A linear formation-flying astronomical interferometer in low Earth orbit</title><author>Hansen, Jonah T. ; Ireland, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c235t-48960fa57850ff59748ae34bff4a3b510986ec75d3acb3a7b5a924f6c6377b3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hansen, Jonah T.</creatorcontrib><creatorcontrib>Ireland, Michael J.</creatorcontrib><collection>CrossRef</collection><jtitle>Publications of the Astronomical Society of Australia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hansen, Jonah T.</au><au>Ireland, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A linear formation-flying astronomical interferometer in low Earth orbit</atitle><jtitle>Publications of the Astronomical Society of Australia</jtitle><date>2020</date><risdate>2020</risdate><volume>37</volume><artnum>e019</artnum><issn>1323-3580</issn><eissn>1448-6083</eissn><abstract>Space interferometry is the inevitable end point of high angular resolution astrophysics, and a key technology that can be leveraged to analyse exoplanet formation and atmospheres with exceptional detail. However, the anticipated cost of large missions, such as Darwin and TPF-I , and inadequate technology readiness levels have resulted in limited developments since the late 2000s. Here, we present a feasibility study into a small-scale formation-flying interferometric array in low Earth orbit, which will aim to prove the technical concepts involved with space interferometry while still making unique astrophysical measurements. We will detail the proposed system architecture and metrology system, as well as present orbital simulations that show that the array should be stable enough to perform interferometry with &lt;50 m s –1 yr –1 delta-v and one thruster per spacecraft. We also conduct observability simulations to identify which parts of the sky are visible for a given orbital configuration. We conclude with optimism that this design is achievable, but a more detailed control simulation factoring in a demonstrated metrology system is the next step to demonstrate full mission feasibility.</abstract><doi>10.1017/pasa.2020.13</doi><orcidid>https://orcid.org/0000-0003-3992-342X</orcidid><orcidid>https://orcid.org/0000-0002-6194-043X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1323-3580
ispartof Publications of the Astronomical Society of Australia, 2020, Vol.37, Article e019
issn 1323-3580
1448-6083
language eng
recordid cdi_crossref_primary_10_1017_pasa_2020_13
source Cambridge Journals Online
title A linear formation-flying astronomical interferometer in low Earth orbit
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A19%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20linear%20formation-flying%20astronomical%20interferometer%20in%20low%20Earth%20orbit&rft.jtitle=Publications%20of%20the%20Astronomical%20Society%20of%20Australia&rft.au=Hansen,%20Jonah%20T.&rft.date=2020&rft.volume=37&rft.artnum=e019&rft.issn=1323-3580&rft.eissn=1448-6083&rft_id=info:doi/10.1017/pasa.2020.13&rft_dat=%3Ccrossref%3E10_1017_pasa_2020_13%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c235t-48960fa57850ff59748ae34bff4a3b510986ec75d3acb3a7b5a924f6c6377b3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true