Loading…

Spectral analysis of 22 radio pulsars using SKA-Low precursor stations

We present the first observational study of pulsars performed with the second-generation precursor stations to the low-frequency component of the Square Kilometre Array (SKA-Low): the Aperture Array Verification System 2 (AAVS2) and the Engineering Development Array 2 (EDA2). Using the SKA-Low stati...

Full description

Saved in:
Bibliographic Details
Published in:Publications of the Astronomical Society of Australia 2022, Vol.39, Article e042
Main Authors: Lee, C. P., Bhat, N. D. R., Sokolowski, M., Swainston, N. A., Ung, D., Magro, A., Chiello, R.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present the first observational study of pulsars performed with the second-generation precursor stations to the low-frequency component of the Square Kilometre Array (SKA-Low): the Aperture Array Verification System 2 (AAVS2) and the Engineering Development Array 2 (EDA2). Using the SKA-Low stations, we have observed 100 southern-sky pulsars between 70–350 MHz, including follow-up observations at multiple frequencies for a selected sample of bright pulsars. These observations have yielded detections of 22 pulsars, including the lowest-frequency detections ever published for 6 pulsars, despite the modest sensitivity of initial system where the recording bandwidth is limited to ${\sim}{1}\,\mathrm{MHz}$ . By comparing simultaneous flux density measurements obtained with the SKA-Low stations and performing rigorous electromagnetic simulations, we verify the accuracy of the SKA-Low sensitivity simulation code presented in Sokolowski (2022, PASA, 39, e015). Furthermore, we perform model fits to the radio spectra of the detected pulsars using the method developed by Jankowski (2018, MNRAS, 473, 4436), including nine pulsars which were not fitted in the original work. We robustly classify the spectra into five morphological classes and find that all but one pulsar exhibit deviations from simple power-law behaviour. These findings suggest that pulsars with well-determined spectra are more likely to show spectral flattening or turnover than average. Our work demonstrates how SKA-Low stations can be meaningfully used for scientifically useful measurements and analysis of pulsar radio spectra, which are important inputs for informing pulsar surveys and science planned with the SKA-Low.
ISSN:1323-3580
1448-6083
DOI:10.1017/pasa.2022.40