Loading…
Stability properties of multidimensional symmetric hyperbolic systems with damping, differential constraints and delay
Multidimensional linear hyperbolic systems with constraints and delay are considered. The existence and uniqueness of solutions for rough data are established using Friedrichs method. With additional regularity and compatibility on the initial data and initial history, the stability of such systems...
Saved in:
Published in: | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2023-09, p.1-43 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c191t-d274806ef4e9457f3b806aa6f080e9330c50580d9efa07ac1b0c5c893621fc5b3 |
container_end_page | 43 |
container_issue | |
container_start_page | 1 |
container_title | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics |
container_volume | |
creator | Peralta, Gilbert |
description | Multidimensional linear hyperbolic systems with constraints and delay are considered. The existence and uniqueness of solutions for rough data are established using Friedrichs method. With additional regularity and compatibility on the initial data and initial history, the stability of such systems are discussed. Under suitable assumptions on the coefficient matrices, we establish standard or regularity-loss type decay estimates. For data that are integrable, better decay rates are provided. The results are applied to the wave, Timoshenko, and linearized Euler–Maxwell systems with delay. |
doi_str_mv | 10.1017/prm.2023.93 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_prm_2023_93</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_prm_2023_93</sourcerecordid><originalsourceid>FETCH-LOGICAL-c191t-d274806ef4e9457f3b806aa6f080e9330c50580d9efa07ac1b0c5c893621fc5b3</originalsourceid><addsrcrecordid>eNotUM1OxCAYJEYT19WTL8Bdu36UtrRHs9HVZBMP6rmh8OFiCm0ANX172ehpfjIzhyHkmsGGARN3c3CbEkq-6fgJWbFK8EKwsjolK-DQFiWD-pxcxPgJAE1bixX5fk1ysKNNC53DNGNIFiOdDHVfY7LaOvTRTl6ONC7OYQpW0cOSc8M0ZhqXmNBF-mPTgWrpZus_bqm2xmBAn2zuqcnHFKT1KVLpNdU4yuWSnBk5Rrz6xzV5f3x42z4V-5fd8_Z-XyjWsVToUlQtNGgq7KpaGD5kJWVjoAXsOAdVQ92C7tBIEFKxITuq7XhTMqPqga_Jzd-uClOMAU0_B-tkWHoG_fGyrF1_vKzPc7_C22Me</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability properties of multidimensional symmetric hyperbolic systems with damping, differential constraints and delay</title><source>Cambridge Journals Online</source><creator>Peralta, Gilbert</creator><creatorcontrib>Peralta, Gilbert</creatorcontrib><description>Multidimensional linear hyperbolic systems with constraints and delay are considered. The existence and uniqueness of solutions for rough data are established using Friedrichs method. With additional regularity and compatibility on the initial data and initial history, the stability of such systems are discussed. Under suitable assumptions on the coefficient matrices, we establish standard or regularity-loss type decay estimates. For data that are integrable, better decay rates are provided. The results are applied to the wave, Timoshenko, and linearized Euler–Maxwell systems with delay.</description><identifier>ISSN: 0308-2105</identifier><identifier>EISSN: 1473-7124</identifier><identifier>DOI: 10.1017/prm.2023.93</identifier><language>eng</language><ispartof>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2023-09, p.1-43</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c191t-d274806ef4e9457f3b806aa6f080e9330c50580d9efa07ac1b0c5c893621fc5b3</cites><orcidid>0000-0002-8406-6837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Peralta, Gilbert</creatorcontrib><title>Stability properties of multidimensional symmetric hyperbolic systems with damping, differential constraints and delay</title><title>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</title><description>Multidimensional linear hyperbolic systems with constraints and delay are considered. The existence and uniqueness of solutions for rough data are established using Friedrichs method. With additional regularity and compatibility on the initial data and initial history, the stability of such systems are discussed. Under suitable assumptions on the coefficient matrices, we establish standard or regularity-loss type decay estimates. For data that are integrable, better decay rates are provided. The results are applied to the wave, Timoshenko, and linearized Euler–Maxwell systems with delay.</description><issn>0308-2105</issn><issn>1473-7124</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotUM1OxCAYJEYT19WTL8Bdu36UtrRHs9HVZBMP6rmh8OFiCm0ANX172ehpfjIzhyHkmsGGARN3c3CbEkq-6fgJWbFK8EKwsjolK-DQFiWD-pxcxPgJAE1bixX5fk1ysKNNC53DNGNIFiOdDHVfY7LaOvTRTl6ONC7OYQpW0cOSc8M0ZhqXmNBF-mPTgWrpZus_bqm2xmBAn2zuqcnHFKT1KVLpNdU4yuWSnBk5Rrz6xzV5f3x42z4V-5fd8_Z-XyjWsVToUlQtNGgq7KpaGD5kJWVjoAXsOAdVQ92C7tBIEFKxITuq7XhTMqPqga_Jzd-uClOMAU0_B-tkWHoG_fGyrF1_vKzPc7_C22Me</recordid><startdate>20230907</startdate><enddate>20230907</enddate><creator>Peralta, Gilbert</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8406-6837</orcidid></search><sort><creationdate>20230907</creationdate><title>Stability properties of multidimensional symmetric hyperbolic systems with damping, differential constraints and delay</title><author>Peralta, Gilbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c191t-d274806ef4e9457f3b806aa6f080e9330c50580d9efa07ac1b0c5c893621fc5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peralta, Gilbert</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peralta, Gilbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability properties of multidimensional symmetric hyperbolic systems with damping, differential constraints and delay</atitle><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle><date>2023-09-07</date><risdate>2023</risdate><spage>1</spage><epage>43</epage><pages>1-43</pages><issn>0308-2105</issn><eissn>1473-7124</eissn><abstract>Multidimensional linear hyperbolic systems with constraints and delay are considered. The existence and uniqueness of solutions for rough data are established using Friedrichs method. With additional regularity and compatibility on the initial data and initial history, the stability of such systems are discussed. Under suitable assumptions on the coefficient matrices, we establish standard or regularity-loss type decay estimates. For data that are integrable, better decay rates are provided. The results are applied to the wave, Timoshenko, and linearized Euler–Maxwell systems with delay.</abstract><doi>10.1017/prm.2023.93</doi><tpages>43</tpages><orcidid>https://orcid.org/0000-0002-8406-6837</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0308-2105 |
ispartof | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2023-09, p.1-43 |
issn | 0308-2105 1473-7124 |
language | eng |
recordid | cdi_crossref_primary_10_1017_prm_2023_93 |
source | Cambridge Journals Online |
title | Stability properties of multidimensional symmetric hyperbolic systems with damping, differential constraints and delay |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A11%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20properties%20of%20multidimensional%20symmetric%20hyperbolic%20systems%20with%20damping,%20differential%20constraints%20and%20delay&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20Edinburgh.%20Section%20A.%20Mathematics&rft.au=Peralta,%20Gilbert&rft.date=2023-09-07&rft.spage=1&rft.epage=43&rft.pages=1-43&rft.issn=0308-2105&rft.eissn=1473-7124&rft_id=info:doi/10.1017/prm.2023.93&rft_dat=%3Ccrossref%3E10_1017_prm_2023_93%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c191t-d274806ef4e9457f3b806aa6f080e9330c50580d9efa07ac1b0c5c893621fc5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |