Loading…

Stability properties of multidimensional symmetric hyperbolic systems with damping, differential constraints and delay

Multidimensional linear hyperbolic systems with constraints and delay are considered. The existence and uniqueness of solutions for rough data are established using Friedrichs method. With additional regularity and compatibility on the initial data and initial history, the stability of such systems...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2023-09, p.1-43
Main Author: Peralta, Gilbert
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c191t-d274806ef4e9457f3b806aa6f080e9330c50580d9efa07ac1b0c5c893621fc5b3
container_end_page 43
container_issue
container_start_page 1
container_title Proceedings of the Royal Society of Edinburgh. Section A. Mathematics
container_volume
creator Peralta, Gilbert
description Multidimensional linear hyperbolic systems with constraints and delay are considered. The existence and uniqueness of solutions for rough data are established using Friedrichs method. With additional regularity and compatibility on the initial data and initial history, the stability of such systems are discussed. Under suitable assumptions on the coefficient matrices, we establish standard or regularity-loss type decay estimates. For data that are integrable, better decay rates are provided. The results are applied to the wave, Timoshenko, and linearized Euler–Maxwell systems with delay.
doi_str_mv 10.1017/prm.2023.93
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_prm_2023_93</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_prm_2023_93</sourcerecordid><originalsourceid>FETCH-LOGICAL-c191t-d274806ef4e9457f3b806aa6f080e9330c50580d9efa07ac1b0c5c893621fc5b3</originalsourceid><addsrcrecordid>eNotUM1OxCAYJEYT19WTL8Bdu36UtrRHs9HVZBMP6rmh8OFiCm0ANX172ehpfjIzhyHkmsGGARN3c3CbEkq-6fgJWbFK8EKwsjolK-DQFiWD-pxcxPgJAE1bixX5fk1ysKNNC53DNGNIFiOdDHVfY7LaOvTRTl6ONC7OYQpW0cOSc8M0ZhqXmNBF-mPTgWrpZus_bqm2xmBAn2zuqcnHFKT1KVLpNdU4yuWSnBk5Rrz6xzV5f3x42z4V-5fd8_Z-XyjWsVToUlQtNGgq7KpaGD5kJWVjoAXsOAdVQ92C7tBIEFKxITuq7XhTMqPqga_Jzd-uClOMAU0_B-tkWHoG_fGyrF1_vKzPc7_C22Me</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability properties of multidimensional symmetric hyperbolic systems with damping, differential constraints and delay</title><source>Cambridge Journals Online</source><creator>Peralta, Gilbert</creator><creatorcontrib>Peralta, Gilbert</creatorcontrib><description>Multidimensional linear hyperbolic systems with constraints and delay are considered. The existence and uniqueness of solutions for rough data are established using Friedrichs method. With additional regularity and compatibility on the initial data and initial history, the stability of such systems are discussed. Under suitable assumptions on the coefficient matrices, we establish standard or regularity-loss type decay estimates. For data that are integrable, better decay rates are provided. The results are applied to the wave, Timoshenko, and linearized Euler–Maxwell systems with delay.</description><identifier>ISSN: 0308-2105</identifier><identifier>EISSN: 1473-7124</identifier><identifier>DOI: 10.1017/prm.2023.93</identifier><language>eng</language><ispartof>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2023-09, p.1-43</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c191t-d274806ef4e9457f3b806aa6f080e9330c50580d9efa07ac1b0c5c893621fc5b3</cites><orcidid>0000-0002-8406-6837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Peralta, Gilbert</creatorcontrib><title>Stability properties of multidimensional symmetric hyperbolic systems with damping, differential constraints and delay</title><title>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</title><description>Multidimensional linear hyperbolic systems with constraints and delay are considered. The existence and uniqueness of solutions for rough data are established using Friedrichs method. With additional regularity and compatibility on the initial data and initial history, the stability of such systems are discussed. Under suitable assumptions on the coefficient matrices, we establish standard or regularity-loss type decay estimates. For data that are integrable, better decay rates are provided. The results are applied to the wave, Timoshenko, and linearized Euler–Maxwell systems with delay.</description><issn>0308-2105</issn><issn>1473-7124</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotUM1OxCAYJEYT19WTL8Bdu36UtrRHs9HVZBMP6rmh8OFiCm0ANX172ehpfjIzhyHkmsGGARN3c3CbEkq-6fgJWbFK8EKwsjolK-DQFiWD-pxcxPgJAE1bixX5fk1ysKNNC53DNGNIFiOdDHVfY7LaOvTRTl6ONC7OYQpW0cOSc8M0ZhqXmNBF-mPTgWrpZus_bqm2xmBAn2zuqcnHFKT1KVLpNdU4yuWSnBk5Rrz6xzV5f3x42z4V-5fd8_Z-XyjWsVToUlQtNGgq7KpaGD5kJWVjoAXsOAdVQ92C7tBIEFKxITuq7XhTMqPqga_Jzd-uClOMAU0_B-tkWHoG_fGyrF1_vKzPc7_C22Me</recordid><startdate>20230907</startdate><enddate>20230907</enddate><creator>Peralta, Gilbert</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8406-6837</orcidid></search><sort><creationdate>20230907</creationdate><title>Stability properties of multidimensional symmetric hyperbolic systems with damping, differential constraints and delay</title><author>Peralta, Gilbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c191t-d274806ef4e9457f3b806aa6f080e9330c50580d9efa07ac1b0c5c893621fc5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peralta, Gilbert</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peralta, Gilbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability properties of multidimensional symmetric hyperbolic systems with damping, differential constraints and delay</atitle><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle><date>2023-09-07</date><risdate>2023</risdate><spage>1</spage><epage>43</epage><pages>1-43</pages><issn>0308-2105</issn><eissn>1473-7124</eissn><abstract>Multidimensional linear hyperbolic systems with constraints and delay are considered. The existence and uniqueness of solutions for rough data are established using Friedrichs method. With additional regularity and compatibility on the initial data and initial history, the stability of such systems are discussed. Under suitable assumptions on the coefficient matrices, we establish standard or regularity-loss type decay estimates. For data that are integrable, better decay rates are provided. The results are applied to the wave, Timoshenko, and linearized Euler–Maxwell systems with delay.</abstract><doi>10.1017/prm.2023.93</doi><tpages>43</tpages><orcidid>https://orcid.org/0000-0002-8406-6837</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0308-2105
ispartof Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2023-09, p.1-43
issn 0308-2105
1473-7124
language eng
recordid cdi_crossref_primary_10_1017_prm_2023_93
source Cambridge Journals Online
title Stability properties of multidimensional symmetric hyperbolic systems with damping, differential constraints and delay
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A11%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20properties%20of%20multidimensional%20symmetric%20hyperbolic%20systems%20with%20damping,%20differential%20constraints%20and%20delay&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20Edinburgh.%20Section%20A.%20Mathematics&rft.au=Peralta,%20Gilbert&rft.date=2023-09-07&rft.spage=1&rft.epage=43&rft.pages=1-43&rft.issn=0308-2105&rft.eissn=1473-7124&rft_id=info:doi/10.1017/prm.2023.93&rft_dat=%3Ccrossref%3E10_1017_prm_2023_93%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c191t-d274806ef4e9457f3b806aa6f080e9330c50580d9efa07ac1b0c5c893621fc5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true