Loading…

Magnetic Nanomaterials: Chemical Design, Synthesis, and Potential Applications

Conspectus Magnetic nanomaterials (MNMs) have attracted significant interest in the past few decades because of their unique properties such as superparamagnetism, which results from the influence of thermal energy on a ferromagnetic nanoparticle. In the superparamagnetic size regime, the moments of...

Full description

Saved in:
Bibliographic Details
Published in:Accounts of chemical research 2018-02, Vol.51 (2), p.404-413
Main Authors: Zhu, Kai, Ju, Yanmin, Xu, Junjie, Yang, Ziyu, Gao, Song, Hou, Yanglong
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Conspectus Magnetic nanomaterials (MNMs) have attracted significant interest in the past few decades because of their unique properties such as superparamagnetism, which results from the influence of thermal energy on a ferromagnetic nanoparticle. In the superparamagnetic size regime, the moments of nanoparticles fluctuate as a result of thermal energy. To understand the fundamental behavior of superparamagnetism and develop relevant potential applications, various preparation routes have been explored to produce MNMs with desired properties and structures. However, some challenges remain for the preparation of well-defined magnetic nanostructures, including exchange-coupled nanomagnets, which are considered as the next generation of advanced magnets. In such a case, effective synthetic methods are required to achieve control over the chemical composition, size, and structure of MNMs. For instance, liquid-phase chemical syntheses, a set of emerging approaches to prepare various magnetic nanostructures, facilitate precise control over the nucleation and specific growth processes of nanomaterials with diverse structures. Among them, the high-temperature organic-phase method is an indispensable one in which the microstructures and physical/chemical properties of MNMs can be tuned by controlling the reaction conditions such as precursor, surfactant, or solvent amounts, reaction temperature or time, reaction atmosphere, etc. In this Account, we present an overview of our progress on the chemical synthesis of various MNMs, including monocomponent nanostructures (e.g., metals, metal alloys, metal oxides/carbides) and multicomponent nanostructures (heterostructures and exchange-coupled nanomagnets). We emphasize the high-temperature organic-phase synthetic method, on which we have been focused over the past decade. Notably, multicomponent nanostructures, obtained by growing or incorporating different functional components together, not only retain the functionalities of each single component but also possess synergic properties that emerge from interfacial coupling, with improved magnetic, optical, or catalytic features. Herein, potential applications of MNMs are covered in three representative areas: biomedicine, catalysis, and environmental purification. Regarding biomedicine, MNMs can detect or target biological entities after being modified with specific biomolecules, and they can be applied to magnetic resonance imaging, imaging-guided drug delivery, and phot
ISSN:0001-4842
1520-4898
DOI:10.1021/acs.accounts.7b00407