Loading…
Highly Accurate Quantitative Analysis Of Enantiomeric Mixtures from Spatially Frequency Encoded 1 H NMR Spectra
We propose an original concept to measure accurately enantiomeric excesses on proton NMR spectra, which combines high-resolution techniques based on a spatial encoding of the sample, with the use of optically active weakly orienting solvents. We show that it is possible to simulate accurately dipola...
Saved in:
Published in: | Analytical chemistry (Washington) 2018-02, Vol.90 (3), p.1595-1600 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose an original concept to measure accurately enantiomeric excesses on proton NMR spectra, which combines high-resolution techniques based on a spatial encoding of the sample, with the use of optically active weakly orienting solvents. We show that it is possible to simulate accurately dipolar edited spectra of enantiomers dissolved in a chiral liquid crystalline phase, and to use these simulations to calibrate integrations that can be measured on experimental data, in order to perform a quantitative chiral analysis. This approach is demonstrated on a chemical intermediate for which optical purity is an essential criterion. We find that there is a very good correlation between the experimental and calculated integration ratios extracted from G-SERF spectra, which paves the way to a general method of determination of enantiomeric excesses based on the observation of
H nuclei. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.7b02411 |