Loading…
Statistical Analyses of a Population Balance Model of a Batch Crystallization Process
Crystallization is a widely employed separation technique that has received significant attention due to its industrial relevance, notably in the pharmaceutical industry. While numerous studies have described the underlying kinetic crystallization phenomena using population balance models, simplifyi...
Saved in:
Published in: | Crystal growth & design 2024-01, Vol.24 (1), p.308-324 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a231t-245dfdfd5a238a0bf1a7ed5a7048ca746250b9069e2fd11c44ee7beb3fe34a4c3 |
container_end_page | 324 |
container_issue | 1 |
container_start_page | 308 |
container_title | Crystal growth & design |
container_volume | 24 |
creator | Lima, Fernando Arrais Romero Dias Barreto Correa, Gabriela de Moraes, Marcellus Guedes Fernandes Segtovich, Iuri Soter Viana Barreto Junior, Amaro Gomes Pinto, José Carlos |
description | Crystallization is a widely employed separation technique that has received significant attention due to its industrial relevance, notably in the pharmaceutical industry. While numerous studies have described the underlying kinetic crystallization phenomena using population balance models, simplifying assumptions are usually considered, such as disregarding variable correlations without accounting for the statistical and numerical consequences. Therefore, this lack of detailed statistical analyses can compromise the reliability of at least some of these results. In this regard, the present work performs the statistical characterization of a potassium sulfate crystallization process with the help of population balance models. In order to do that, the model parameters were determined using reparameterization procedures and experimental data collected from multiple batches to mitigate the undesired effects of high correlation in measured variables, which characterize these experimental systems and respective model parameters. It is shown that the proposed approach can successfully represent the solute concentration, the zeroth-order moment, and the ratios between higher-order and zeroth-order moments, considering the available experimental data set. Particularly, the particle swarm optimization (PSO) method was applied for the characterization of the confidence regions of the parameter values. The obtained results indicate that the model-based quantitative analysis of crystallization models can significantly benefit from more statistical interpretation of parameter estimates and variable correlation effects. |
doi_str_mv | 10.1021/acs.cgd.3c01027 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_cgd_3c01027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c401256629</sourcerecordid><originalsourceid>FETCH-LOGICAL-a231t-245dfdfd5a238a0bf1a7ed5a7048ca746250b9069e2fd11c44ee7beb3fe34a4c3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqUws3pHae3YidOxjaAgFVEJOkcXx4ZUJq586RB-Pa5SRnTD3dN7d9J9hNxzNuMs5XPQONOfzUxoFrW6IBOepUWiMpZd_s2yENfkBnHPGFO5EBOye--hb7FvNTi67MANaJB6S4Fu_eHoouk7ugIHnTb01TfGje4Kev1FyzBgD861P2NwG7w2iLfkyoJDc3fuU7J7evwon5PN2_qlXG4SSAXvk1RmjY2VRVkAqy0HZaJSTBYalMzTjNULli9MahvOtZTGqNrUwhohQWoxJfPxrg4eMRhbHUL7DWGoOKtOVKpIpYpUqjOVuPEwbpyMvT-G-DL-m_4FwK1maw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Statistical Analyses of a Population Balance Model of a Batch Crystallization Process</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Lima, Fernando Arrais Romero Dias ; Barreto Correa, Gabriela ; de Moraes, Marcellus Guedes Fernandes ; Segtovich, Iuri Soter Viana ; Barreto Junior, Amaro Gomes ; Pinto, José Carlos</creator><creatorcontrib>Lima, Fernando Arrais Romero Dias ; Barreto Correa, Gabriela ; de Moraes, Marcellus Guedes Fernandes ; Segtovich, Iuri Soter Viana ; Barreto Junior, Amaro Gomes ; Pinto, José Carlos</creatorcontrib><description>Crystallization is a widely employed separation technique that has received significant attention due to its industrial relevance, notably in the pharmaceutical industry. While numerous studies have described the underlying kinetic crystallization phenomena using population balance models, simplifying assumptions are usually considered, such as disregarding variable correlations without accounting for the statistical and numerical consequences. Therefore, this lack of detailed statistical analyses can compromise the reliability of at least some of these results. In this regard, the present work performs the statistical characterization of a potassium sulfate crystallization process with the help of population balance models. In order to do that, the model parameters were determined using reparameterization procedures and experimental data collected from multiple batches to mitigate the undesired effects of high correlation in measured variables, which characterize these experimental systems and respective model parameters. It is shown that the proposed approach can successfully represent the solute concentration, the zeroth-order moment, and the ratios between higher-order and zeroth-order moments, considering the available experimental data set. Particularly, the particle swarm optimization (PSO) method was applied for the characterization of the confidence regions of the parameter values. The obtained results indicate that the model-based quantitative analysis of crystallization models can significantly benefit from more statistical interpretation of parameter estimates and variable correlation effects.</description><identifier>ISSN: 1528-7483</identifier><identifier>EISSN: 1528-7505</identifier><identifier>DOI: 10.1021/acs.cgd.3c01027</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Crystal growth & design, 2024-01, Vol.24 (1), p.308-324</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a231t-245dfdfd5a238a0bf1a7ed5a7048ca746250b9069e2fd11c44ee7beb3fe34a4c3</cites><orcidid>0000-0003-2631-1811 ; 0000-0003-1580-3669 ; 0000-0001-8238-2310 ; 0009-0004-5025-3804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lima, Fernando Arrais Romero Dias</creatorcontrib><creatorcontrib>Barreto Correa, Gabriela</creatorcontrib><creatorcontrib>de Moraes, Marcellus Guedes Fernandes</creatorcontrib><creatorcontrib>Segtovich, Iuri Soter Viana</creatorcontrib><creatorcontrib>Barreto Junior, Amaro Gomes</creatorcontrib><creatorcontrib>Pinto, José Carlos</creatorcontrib><title>Statistical Analyses of a Population Balance Model of a Batch Crystallization Process</title><title>Crystal growth & design</title><addtitle>Cryst. Growth Des</addtitle><description>Crystallization is a widely employed separation technique that has received significant attention due to its industrial relevance, notably in the pharmaceutical industry. While numerous studies have described the underlying kinetic crystallization phenomena using population balance models, simplifying assumptions are usually considered, such as disregarding variable correlations without accounting for the statistical and numerical consequences. Therefore, this lack of detailed statistical analyses can compromise the reliability of at least some of these results. In this regard, the present work performs the statistical characterization of a potassium sulfate crystallization process with the help of population balance models. In order to do that, the model parameters were determined using reparameterization procedures and experimental data collected from multiple batches to mitigate the undesired effects of high correlation in measured variables, which characterize these experimental systems and respective model parameters. It is shown that the proposed approach can successfully represent the solute concentration, the zeroth-order moment, and the ratios between higher-order and zeroth-order moments, considering the available experimental data set. Particularly, the particle swarm optimization (PSO) method was applied for the characterization of the confidence regions of the parameter values. The obtained results indicate that the model-based quantitative analysis of crystallization models can significantly benefit from more statistical interpretation of parameter estimates and variable correlation effects.</description><issn>1528-7483</issn><issn>1528-7505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqUws3pHae3YidOxjaAgFVEJOkcXx4ZUJq586RB-Pa5SRnTD3dN7d9J9hNxzNuMs5XPQONOfzUxoFrW6IBOepUWiMpZd_s2yENfkBnHPGFO5EBOye--hb7FvNTi67MANaJB6S4Fu_eHoouk7ugIHnTb01TfGje4Kev1FyzBgD861P2NwG7w2iLfkyoJDc3fuU7J7evwon5PN2_qlXG4SSAXvk1RmjY2VRVkAqy0HZaJSTBYalMzTjNULli9MahvOtZTGqNrUwhohQWoxJfPxrg4eMRhbHUL7DWGoOKtOVKpIpYpUqjOVuPEwbpyMvT-G-DL-m_4FwK1maw</recordid><startdate>20240103</startdate><enddate>20240103</enddate><creator>Lima, Fernando Arrais Romero Dias</creator><creator>Barreto Correa, Gabriela</creator><creator>de Moraes, Marcellus Guedes Fernandes</creator><creator>Segtovich, Iuri Soter Viana</creator><creator>Barreto Junior, Amaro Gomes</creator><creator>Pinto, José Carlos</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2631-1811</orcidid><orcidid>https://orcid.org/0000-0003-1580-3669</orcidid><orcidid>https://orcid.org/0000-0001-8238-2310</orcidid><orcidid>https://orcid.org/0009-0004-5025-3804</orcidid></search><sort><creationdate>20240103</creationdate><title>Statistical Analyses of a Population Balance Model of a Batch Crystallization Process</title><author>Lima, Fernando Arrais Romero Dias ; Barreto Correa, Gabriela ; de Moraes, Marcellus Guedes Fernandes ; Segtovich, Iuri Soter Viana ; Barreto Junior, Amaro Gomes ; Pinto, José Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a231t-245dfdfd5a238a0bf1a7ed5a7048ca746250b9069e2fd11c44ee7beb3fe34a4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lima, Fernando Arrais Romero Dias</creatorcontrib><creatorcontrib>Barreto Correa, Gabriela</creatorcontrib><creatorcontrib>de Moraes, Marcellus Guedes Fernandes</creatorcontrib><creatorcontrib>Segtovich, Iuri Soter Viana</creatorcontrib><creatorcontrib>Barreto Junior, Amaro Gomes</creatorcontrib><creatorcontrib>Pinto, José Carlos</creatorcontrib><collection>CrossRef</collection><jtitle>Crystal growth & design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lima, Fernando Arrais Romero Dias</au><au>Barreto Correa, Gabriela</au><au>de Moraes, Marcellus Guedes Fernandes</au><au>Segtovich, Iuri Soter Viana</au><au>Barreto Junior, Amaro Gomes</au><au>Pinto, José Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Analyses of a Population Balance Model of a Batch Crystallization Process</atitle><jtitle>Crystal growth & design</jtitle><addtitle>Cryst. Growth Des</addtitle><date>2024-01-03</date><risdate>2024</risdate><volume>24</volume><issue>1</issue><spage>308</spage><epage>324</epage><pages>308-324</pages><issn>1528-7483</issn><eissn>1528-7505</eissn><abstract>Crystallization is a widely employed separation technique that has received significant attention due to its industrial relevance, notably in the pharmaceutical industry. While numerous studies have described the underlying kinetic crystallization phenomena using population balance models, simplifying assumptions are usually considered, such as disregarding variable correlations without accounting for the statistical and numerical consequences. Therefore, this lack of detailed statistical analyses can compromise the reliability of at least some of these results. In this regard, the present work performs the statistical characterization of a potassium sulfate crystallization process with the help of population balance models. In order to do that, the model parameters were determined using reparameterization procedures and experimental data collected from multiple batches to mitigate the undesired effects of high correlation in measured variables, which characterize these experimental systems and respective model parameters. It is shown that the proposed approach can successfully represent the solute concentration, the zeroth-order moment, and the ratios between higher-order and zeroth-order moments, considering the available experimental data set. Particularly, the particle swarm optimization (PSO) method was applied for the characterization of the confidence regions of the parameter values. The obtained results indicate that the model-based quantitative analysis of crystallization models can significantly benefit from more statistical interpretation of parameter estimates and variable correlation effects.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.cgd.3c01027</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2631-1811</orcidid><orcidid>https://orcid.org/0000-0003-1580-3669</orcidid><orcidid>https://orcid.org/0000-0001-8238-2310</orcidid><orcidid>https://orcid.org/0009-0004-5025-3804</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1528-7483 |
ispartof | Crystal growth & design, 2024-01, Vol.24 (1), p.308-324 |
issn | 1528-7483 1528-7505 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_cgd_3c01027 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Statistical Analyses of a Population Balance Model of a Batch Crystallization Process |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A56%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Analyses%20of%20a%20Population%20Balance%20Model%20of%20a%20Batch%20Crystallization%20Process&rft.jtitle=Crystal%20growth%20&%20design&rft.au=Lima,%20Fernando%20Arrais%20Romero%20Dias&rft.date=2024-01-03&rft.volume=24&rft.issue=1&rft.spage=308&rft.epage=324&rft.pages=308-324&rft.issn=1528-7483&rft.eissn=1528-7505&rft_id=info:doi/10.1021/acs.cgd.3c01027&rft_dat=%3Cacs_cross%3Ec401256629%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a231t-245dfdfd5a238a0bf1a7ed5a7048ca746250b9069e2fd11c44ee7beb3fe34a4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |