Loading…

Scaling and Dynamic Stability of Model Vicinal Surfaces

We propose an integrated modeling approach to the fundamental problem of vicinal crystal surfaces destabilized by step-down (SD) and step-up (SU) currents with focus on both the initial and the intermediate stages of the process. We reproduce and analyze quantitatively the step bunching (SB) instabi...

Full description

Saved in:
Bibliographic Details
Published in:Crystal growth & design 2019-02, Vol.19 (2), p.821-831
Main Authors: Krzyżewski, Filip, Załuska-Kotur, Magdalena, Krasteva, Anna, Popova, Hristina, Tonchev, Vesselin
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a277t-a5ed8457b0ee9038ed5f51feb46e1b357be69b756d9db4e142fde256b9e3ab963
cites cdi_FETCH-LOGICAL-a277t-a5ed8457b0ee9038ed5f51feb46e1b357be69b756d9db4e142fde256b9e3ab963
container_end_page 831
container_issue 2
container_start_page 821
container_title Crystal growth & design
container_volume 19
creator Krzyżewski, Filip
Załuska-Kotur, Magdalena
Krasteva, Anna
Popova, Hristina
Tonchev, Vesselin
description We propose an integrated modeling approach to the fundamental problem of vicinal crystal surfaces destabilized by step-down (SD) and step-up (SU) currents with focus on both the initial and the intermediate stages of the process. We reproduce and analyze quantitatively the step bunching (SB) instability, caused by the two opposite drift directions in the two situations of step motion mediating sublimation and growth. For this reason we develop further our atomistic scale model (vicCA) of vicinal crystal growth (Gr) destabilized by SD drift of the adatoms in order to account for also the vicinal crystal sublimation (Sbl) and the SU drift of the adatoms as an alternative mode of destabilization. For each of the four possible casesGr + SD, Gr + SU, Sbl + SD, Sbl + SU, we find a self-similar solutionthe time-scaling of the number of steps in the bunch N, N = 2 T / 3 , where T is the time, rescaled with a combination of model parameters. In order to study systematically the emergence of the instability, we use N further as a measure and probe the model’s stability against SB on a dense grid of points in the parameter space. Stability diagrams are obtained, based on simulations running to fixed moderate rescaled times and with small-size systems. We confirm the value of the numerical prefactor in the time scaling of N, 2 / 3 by results obtained from systems of ordinary differential equations for the step velocity that contain, in contrast to vicCA, step–step repulsions. This last part of our study provides also the possibility to distinguish between diffusion-limited and kinetic-limited versions of the step bunching phenomenon.
doi_str_mv 10.1021/acs.cgd.8b01379
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_cgd_8b01379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b596198148</sourcerecordid><originalsourceid>FETCH-LOGICAL-a277t-a5ed8457b0ee9038ed5f51feb46e1b357be69b756d9db4e142fde256b9e3ab963</originalsourceid><addsrcrecordid>eNp1j71PwzAUxC0EEqUws3pHae04tuMRFShIRQwBVssfz5WrNEF2OuS_J1XLyHRPurun-yF0T8mCkpIujcsLt_WL2hLKpLpAM8rLupCc8Mu_u6rZNbrJeUcIkYKxGZKNM23stth0Hj-NndlHh5vB2NjGYcR9wO-9hxZ_Rxc70-LmkIJxkG_RVTBthruzztHXy_Pn6rXYfKzfVo-bwpRSDoXh4OuKS0sAFGE1eB44DWArAdSyyQChrOTCK28roFUZPJRcWAXMWCXYHC1Pf13qc04Q9E-Ke5NGTYk-cuuJW0_c-sw9NR5OjaOx6w9pmp3_Tf8CWOtbLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Scaling and Dynamic Stability of Model Vicinal Surfaces</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Krzyżewski, Filip ; Załuska-Kotur, Magdalena ; Krasteva, Anna ; Popova, Hristina ; Tonchev, Vesselin</creator><creatorcontrib>Krzyżewski, Filip ; Załuska-Kotur, Magdalena ; Krasteva, Anna ; Popova, Hristina ; Tonchev, Vesselin</creatorcontrib><description>We propose an integrated modeling approach to the fundamental problem of vicinal crystal surfaces destabilized by step-down (SD) and step-up (SU) currents with focus on both the initial and the intermediate stages of the process. We reproduce and analyze quantitatively the step bunching (SB) instability, caused by the two opposite drift directions in the two situations of step motion mediating sublimation and growth. For this reason we develop further our atomistic scale model (vicCA) of vicinal crystal growth (Gr) destabilized by SD drift of the adatoms in order to account for also the vicinal crystal sublimation (Sbl) and the SU drift of the adatoms as an alternative mode of destabilization. For each of the four possible casesGr + SD, Gr + SU, Sbl + SD, Sbl + SU, we find a self-similar solutionthe time-scaling of the number of steps in the bunch N, N = 2 T / 3 , where T is the time, rescaled with a combination of model parameters. In order to study systematically the emergence of the instability, we use N further as a measure and probe the model’s stability against SB on a dense grid of points in the parameter space. Stability diagrams are obtained, based on simulations running to fixed moderate rescaled times and with small-size systems. We confirm the value of the numerical prefactor in the time scaling of N, 2 / 3 by results obtained from systems of ordinary differential equations for the step velocity that contain, in contrast to vicCA, step–step repulsions. This last part of our study provides also the possibility to distinguish between diffusion-limited and kinetic-limited versions of the step bunching phenomenon.</description><identifier>ISSN: 1528-7483</identifier><identifier>EISSN: 1528-7505</identifier><identifier>DOI: 10.1021/acs.cgd.8b01379</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Crystal growth &amp; design, 2019-02, Vol.19 (2), p.821-831</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a277t-a5ed8457b0ee9038ed5f51feb46e1b357be69b756d9db4e142fde256b9e3ab963</citedby><cites>FETCH-LOGICAL-a277t-a5ed8457b0ee9038ed5f51feb46e1b357be69b756d9db4e142fde256b9e3ab963</cites><orcidid>0000-0003-0794-4509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Krzyżewski, Filip</creatorcontrib><creatorcontrib>Załuska-Kotur, Magdalena</creatorcontrib><creatorcontrib>Krasteva, Anna</creatorcontrib><creatorcontrib>Popova, Hristina</creatorcontrib><creatorcontrib>Tonchev, Vesselin</creatorcontrib><title>Scaling and Dynamic Stability of Model Vicinal Surfaces</title><title>Crystal growth &amp; design</title><addtitle>Cryst. Growth Des</addtitle><description>We propose an integrated modeling approach to the fundamental problem of vicinal crystal surfaces destabilized by step-down (SD) and step-up (SU) currents with focus on both the initial and the intermediate stages of the process. We reproduce and analyze quantitatively the step bunching (SB) instability, caused by the two opposite drift directions in the two situations of step motion mediating sublimation and growth. For this reason we develop further our atomistic scale model (vicCA) of vicinal crystal growth (Gr) destabilized by SD drift of the adatoms in order to account for also the vicinal crystal sublimation (Sbl) and the SU drift of the adatoms as an alternative mode of destabilization. For each of the four possible casesGr + SD, Gr + SU, Sbl + SD, Sbl + SU, we find a self-similar solutionthe time-scaling of the number of steps in the bunch N, N = 2 T / 3 , where T is the time, rescaled with a combination of model parameters. In order to study systematically the emergence of the instability, we use N further as a measure and probe the model’s stability against SB on a dense grid of points in the parameter space. Stability diagrams are obtained, based on simulations running to fixed moderate rescaled times and with small-size systems. We confirm the value of the numerical prefactor in the time scaling of N, 2 / 3 by results obtained from systems of ordinary differential equations for the step velocity that contain, in contrast to vicCA, step–step repulsions. This last part of our study provides also the possibility to distinguish between diffusion-limited and kinetic-limited versions of the step bunching phenomenon.</description><issn>1528-7483</issn><issn>1528-7505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1j71PwzAUxC0EEqUws3pHae04tuMRFShIRQwBVssfz5WrNEF2OuS_J1XLyHRPurun-yF0T8mCkpIujcsLt_WL2hLKpLpAM8rLupCc8Mu_u6rZNbrJeUcIkYKxGZKNM23stth0Hj-NndlHh5vB2NjGYcR9wO-9hxZ_Rxc70-LmkIJxkG_RVTBthruzztHXy_Pn6rXYfKzfVo-bwpRSDoXh4OuKS0sAFGE1eB44DWArAdSyyQChrOTCK28roFUZPJRcWAXMWCXYHC1Pf13qc04Q9E-Ke5NGTYk-cuuJW0_c-sw9NR5OjaOx6w9pmp3_Tf8CWOtbLw</recordid><startdate>20190206</startdate><enddate>20190206</enddate><creator>Krzyżewski, Filip</creator><creator>Załuska-Kotur, Magdalena</creator><creator>Krasteva, Anna</creator><creator>Popova, Hristina</creator><creator>Tonchev, Vesselin</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0794-4509</orcidid></search><sort><creationdate>20190206</creationdate><title>Scaling and Dynamic Stability of Model Vicinal Surfaces</title><author>Krzyżewski, Filip ; Załuska-Kotur, Magdalena ; Krasteva, Anna ; Popova, Hristina ; Tonchev, Vesselin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a277t-a5ed8457b0ee9038ed5f51feb46e1b357be69b756d9db4e142fde256b9e3ab963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krzyżewski, Filip</creatorcontrib><creatorcontrib>Załuska-Kotur, Magdalena</creatorcontrib><creatorcontrib>Krasteva, Anna</creatorcontrib><creatorcontrib>Popova, Hristina</creatorcontrib><creatorcontrib>Tonchev, Vesselin</creatorcontrib><collection>CrossRef</collection><jtitle>Crystal growth &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krzyżewski, Filip</au><au>Załuska-Kotur, Magdalena</au><au>Krasteva, Anna</au><au>Popova, Hristina</au><au>Tonchev, Vesselin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling and Dynamic Stability of Model Vicinal Surfaces</atitle><jtitle>Crystal growth &amp; design</jtitle><addtitle>Cryst. Growth Des</addtitle><date>2019-02-06</date><risdate>2019</risdate><volume>19</volume><issue>2</issue><spage>821</spage><epage>831</epage><pages>821-831</pages><issn>1528-7483</issn><eissn>1528-7505</eissn><abstract>We propose an integrated modeling approach to the fundamental problem of vicinal crystal surfaces destabilized by step-down (SD) and step-up (SU) currents with focus on both the initial and the intermediate stages of the process. We reproduce and analyze quantitatively the step bunching (SB) instability, caused by the two opposite drift directions in the two situations of step motion mediating sublimation and growth. For this reason we develop further our atomistic scale model (vicCA) of vicinal crystal growth (Gr) destabilized by SD drift of the adatoms in order to account for also the vicinal crystal sublimation (Sbl) and the SU drift of the adatoms as an alternative mode of destabilization. For each of the four possible casesGr + SD, Gr + SU, Sbl + SD, Sbl + SU, we find a self-similar solutionthe time-scaling of the number of steps in the bunch N, N = 2 T / 3 , where T is the time, rescaled with a combination of model parameters. In order to study systematically the emergence of the instability, we use N further as a measure and probe the model’s stability against SB on a dense grid of points in the parameter space. Stability diagrams are obtained, based on simulations running to fixed moderate rescaled times and with small-size systems. We confirm the value of the numerical prefactor in the time scaling of N, 2 / 3 by results obtained from systems of ordinary differential equations for the step velocity that contain, in contrast to vicCA, step–step repulsions. This last part of our study provides also the possibility to distinguish between diffusion-limited and kinetic-limited versions of the step bunching phenomenon.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.cgd.8b01379</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0794-4509</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1528-7483
ispartof Crystal growth & design, 2019-02, Vol.19 (2), p.821-831
issn 1528-7483
1528-7505
language eng
recordid cdi_crossref_primary_10_1021_acs_cgd_8b01379
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Scaling and Dynamic Stability of Model Vicinal Surfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A00%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20and%20Dynamic%20Stability%20of%20Model%20Vicinal%20Surfaces&rft.jtitle=Crystal%20growth%20&%20design&rft.au=Krzyz%CC%87ewski,%20Filip&rft.date=2019-02-06&rft.volume=19&rft.issue=2&rft.spage=821&rft.epage=831&rft.pages=821-831&rft.issn=1528-7483&rft.eissn=1528-7505&rft_id=info:doi/10.1021/acs.cgd.8b01379&rft_dat=%3Cacs_cross%3Eb596198148%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a277t-a5ed8457b0ee9038ed5f51feb46e1b357be69b756d9db4e142fde256b9e3ab963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true