Loading…
Hydration and Ionic Conduction Mechanisms of Hexagonal Perovskite Derivatives
High ionic conductivity has been recently reported in hexagonal perovskite derivative materials. These systems constitute a promising class of novel electrolytes for application in hydrogen-based energy technologies. Herein, we performed the first in situ hydration neutron diffraction experiments an...
Saved in:
Published in: | Chemistry of materials 2021-06, Vol.33 (12), p.4651-4660 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a408t-3e257c754cd27cc77f4c6147f0e2b58840ee34785ddb8555cf0ae042718803e93 |
---|---|
cites | cdi_FETCH-LOGICAL-a408t-3e257c754cd27cc77f4c6147f0e2b58840ee34785ddb8555cf0ae042718803e93 |
container_end_page | 4660 |
container_issue | 12 |
container_start_page | 4651 |
container_title | Chemistry of materials |
container_volume | 33 |
creator | Fop, Sacha Dawson, James A Fortes, Andrew Dominic Ritter, Clemens McLaughlin, Abbie C |
description | High ionic conductivity has been recently reported in hexagonal perovskite derivative materials. These systems constitute a promising class of novel electrolytes for application in hydrogen-based energy technologies. Herein, we performed the first in situ hydration neutron diffraction experiments and atomistic calculations for the determination of the water absorption and ionic conduction mechanisms in the dual-ion conductor Ba7Nb4MoO20. Our results demonstrate a remarkable mechanism of water uptake and proton incorporation, assisted by the ability of the structure of accommodating substantial stacking and anion disorder. Simulations show high dynamic and rotational flexibility of the variable coordination MO x units, a crucial factor in enabling fast ionic transport along the palmierite-like layers. Such flexibility contributes to delocalization of the proton defects and to the creation of a frustrated proton sublattice with high proton mobility and low energy diffusion pathways. These insights provide design principles for the discovery of innovative ionic conductors crystallizing in related hexagonal systems or disordered oxide structures. |
doi_str_mv | 10.1021/acs.chemmater.1c01141 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_1c01141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b570370592</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-3e257c754cd27cc77f4c6147f0e2b58840ee34785ddb8555cf0ae042718803e93</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqHwCUj-gZSxY9fuEpVHKrWCBawjdzKhKU2M7DSif09KK7asRpq550pzGLsVMBYgxZ3DOMY1NY3rKIwFghBKnLFEaAmpBpDnLAE7NakyenLJrmLcwJABaRO2zPdlcF3tW-7aks99WyOf-bbc4e9ySbh2bR2byH3Fc_p2H751W_5Kwffxs-6IP1Co-6Gip3jNLiq3jXRzmiP2_vT4NsvTxcvzfHa_SJ0C26UZSW3QaIWlNIjGVAonQpkKSK60tQqIMmWsLsuV1VpjBY5ASSOshYym2YjpYy8GH2OgqvgKdePCvhBQHJwUg5Piz0lxcjJw4sgdzhu_C8Mr8R_mB17Vakk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hydration and Ionic Conduction Mechanisms of Hexagonal Perovskite Derivatives</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Fop, Sacha ; Dawson, James A ; Fortes, Andrew Dominic ; Ritter, Clemens ; McLaughlin, Abbie C</creator><creatorcontrib>Fop, Sacha ; Dawson, James A ; Fortes, Andrew Dominic ; Ritter, Clemens ; McLaughlin, Abbie C</creatorcontrib><description>High ionic conductivity has been recently reported in hexagonal perovskite derivative materials. These systems constitute a promising class of novel electrolytes for application in hydrogen-based energy technologies. Herein, we performed the first in situ hydration neutron diffraction experiments and atomistic calculations for the determination of the water absorption and ionic conduction mechanisms in the dual-ion conductor Ba7Nb4MoO20. Our results demonstrate a remarkable mechanism of water uptake and proton incorporation, assisted by the ability of the structure of accommodating substantial stacking and anion disorder. Simulations show high dynamic and rotational flexibility of the variable coordination MO x units, a crucial factor in enabling fast ionic transport along the palmierite-like layers. Such flexibility contributes to delocalization of the proton defects and to the creation of a frustrated proton sublattice with high proton mobility and low energy diffusion pathways. These insights provide design principles for the discovery of innovative ionic conductors crystallizing in related hexagonal systems or disordered oxide structures.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.1c01141</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2021-06, Vol.33 (12), p.4651-4660</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-3e257c754cd27cc77f4c6147f0e2b58840ee34785ddb8555cf0ae042718803e93</citedby><cites>FETCH-LOGICAL-a408t-3e257c754cd27cc77f4c6147f0e2b58840ee34785ddb8555cf0ae042718803e93</cites><orcidid>0000-0003-4168-6363 ; 0000-0001-9960-723X ; 0000-0001-5907-2285 ; 0000-0002-3946-5337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fop, Sacha</creatorcontrib><creatorcontrib>Dawson, James A</creatorcontrib><creatorcontrib>Fortes, Andrew Dominic</creatorcontrib><creatorcontrib>Ritter, Clemens</creatorcontrib><creatorcontrib>McLaughlin, Abbie C</creatorcontrib><title>Hydration and Ionic Conduction Mechanisms of Hexagonal Perovskite Derivatives</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>High ionic conductivity has been recently reported in hexagonal perovskite derivative materials. These systems constitute a promising class of novel electrolytes for application in hydrogen-based energy technologies. Herein, we performed the first in situ hydration neutron diffraction experiments and atomistic calculations for the determination of the water absorption and ionic conduction mechanisms in the dual-ion conductor Ba7Nb4MoO20. Our results demonstrate a remarkable mechanism of water uptake and proton incorporation, assisted by the ability of the structure of accommodating substantial stacking and anion disorder. Simulations show high dynamic and rotational flexibility of the variable coordination MO x units, a crucial factor in enabling fast ionic transport along the palmierite-like layers. Such flexibility contributes to delocalization of the proton defects and to the creation of a frustrated proton sublattice with high proton mobility and low energy diffusion pathways. These insights provide design principles for the discovery of innovative ionic conductors crystallizing in related hexagonal systems or disordered oxide structures.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqHwCUj-gZSxY9fuEpVHKrWCBawjdzKhKU2M7DSif09KK7asRpq550pzGLsVMBYgxZ3DOMY1NY3rKIwFghBKnLFEaAmpBpDnLAE7NakyenLJrmLcwJABaRO2zPdlcF3tW-7aks99WyOf-bbc4e9ySbh2bR2byH3Fc_p2H751W_5Kwffxs-6IP1Co-6Gip3jNLiq3jXRzmiP2_vT4NsvTxcvzfHa_SJ0C26UZSW3QaIWlNIjGVAonQpkKSK60tQqIMmWsLsuV1VpjBY5ASSOshYym2YjpYy8GH2OgqvgKdePCvhBQHJwUg5Piz0lxcjJw4sgdzhu_C8Mr8R_mB17Vakk</recordid><startdate>20210622</startdate><enddate>20210622</enddate><creator>Fop, Sacha</creator><creator>Dawson, James A</creator><creator>Fortes, Andrew Dominic</creator><creator>Ritter, Clemens</creator><creator>McLaughlin, Abbie C</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4168-6363</orcidid><orcidid>https://orcid.org/0000-0001-9960-723X</orcidid><orcidid>https://orcid.org/0000-0001-5907-2285</orcidid><orcidid>https://orcid.org/0000-0002-3946-5337</orcidid></search><sort><creationdate>20210622</creationdate><title>Hydration and Ionic Conduction Mechanisms of Hexagonal Perovskite Derivatives</title><author>Fop, Sacha ; Dawson, James A ; Fortes, Andrew Dominic ; Ritter, Clemens ; McLaughlin, Abbie C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-3e257c754cd27cc77f4c6147f0e2b58840ee34785ddb8555cf0ae042718803e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fop, Sacha</creatorcontrib><creatorcontrib>Dawson, James A</creatorcontrib><creatorcontrib>Fortes, Andrew Dominic</creatorcontrib><creatorcontrib>Ritter, Clemens</creatorcontrib><creatorcontrib>McLaughlin, Abbie C</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fop, Sacha</au><au>Dawson, James A</au><au>Fortes, Andrew Dominic</au><au>Ritter, Clemens</au><au>McLaughlin, Abbie C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydration and Ionic Conduction Mechanisms of Hexagonal Perovskite Derivatives</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2021-06-22</date><risdate>2021</risdate><volume>33</volume><issue>12</issue><spage>4651</spage><epage>4660</epage><pages>4651-4660</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>High ionic conductivity has been recently reported in hexagonal perovskite derivative materials. These systems constitute a promising class of novel electrolytes for application in hydrogen-based energy technologies. Herein, we performed the first in situ hydration neutron diffraction experiments and atomistic calculations for the determination of the water absorption and ionic conduction mechanisms in the dual-ion conductor Ba7Nb4MoO20. Our results demonstrate a remarkable mechanism of water uptake and proton incorporation, assisted by the ability of the structure of accommodating substantial stacking and anion disorder. Simulations show high dynamic and rotational flexibility of the variable coordination MO x units, a crucial factor in enabling fast ionic transport along the palmierite-like layers. Such flexibility contributes to delocalization of the proton defects and to the creation of a frustrated proton sublattice with high proton mobility and low energy diffusion pathways. These insights provide design principles for the discovery of innovative ionic conductors crystallizing in related hexagonal systems or disordered oxide structures.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.1c01141</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4168-6363</orcidid><orcidid>https://orcid.org/0000-0001-9960-723X</orcidid><orcidid>https://orcid.org/0000-0001-5907-2285</orcidid><orcidid>https://orcid.org/0000-0002-3946-5337</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2021-06, Vol.33 (12), p.4651-4660 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_chemmater_1c01141 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Hydration and Ionic Conduction Mechanisms of Hexagonal Perovskite Derivatives |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A06%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydration%20and%20Ionic%20Conduction%20Mechanisms%20of%20Hexagonal%20Perovskite%20Derivatives&rft.jtitle=Chemistry%20of%20materials&rft.au=Fop,%20Sacha&rft.date=2021-06-22&rft.volume=33&rft.issue=12&rft.spage=4651&rft.epage=4660&rft.pages=4651-4660&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.1c01141&rft_dat=%3Cacs_cross%3Eb570370592%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a408t-3e257c754cd27cc77f4c6147f0e2b58840ee34785ddb8555cf0ae042718803e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |