Loading…

Hydration and Ionic Conduction Mechanisms of Hexagonal Perovskite Derivatives

High ionic conductivity has been recently reported in hexagonal perovskite derivative materials. These systems constitute a promising class of novel electrolytes for application in hydrogen-based energy technologies. Herein, we performed the first in situ hydration neutron diffraction experiments an...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2021-06, Vol.33 (12), p.4651-4660
Main Authors: Fop, Sacha, Dawson, James A, Fortes, Andrew Dominic, Ritter, Clemens, McLaughlin, Abbie C
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a408t-3e257c754cd27cc77f4c6147f0e2b58840ee34785ddb8555cf0ae042718803e93
cites cdi_FETCH-LOGICAL-a408t-3e257c754cd27cc77f4c6147f0e2b58840ee34785ddb8555cf0ae042718803e93
container_end_page 4660
container_issue 12
container_start_page 4651
container_title Chemistry of materials
container_volume 33
creator Fop, Sacha
Dawson, James A
Fortes, Andrew Dominic
Ritter, Clemens
McLaughlin, Abbie C
description High ionic conductivity has been recently reported in hexagonal perovskite derivative materials. These systems constitute a promising class of novel electrolytes for application in hydrogen-based energy technologies. Herein, we performed the first in situ hydration neutron diffraction experiments and atomistic calculations for the determination of the water absorption and ionic conduction mechanisms in the dual-ion conductor Ba7Nb4MoO20. Our results demonstrate a remarkable mechanism of water uptake and proton incorporation, assisted by the ability of the structure of accommodating substantial stacking and anion disorder. Simulations show high dynamic and rotational flexibility of the variable coordination MO x units, a crucial factor in enabling fast ionic transport along the palmierite-like layers. Such flexibility contributes to delocalization of the proton defects and to the creation of a frustrated proton sublattice with high proton mobility and low energy diffusion pathways. These insights provide design principles for the discovery of innovative ionic conductors crystallizing in related hexagonal systems or disordered oxide structures.
doi_str_mv 10.1021/acs.chemmater.1c01141
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_1c01141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b570370592</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-3e257c754cd27cc77f4c6147f0e2b58840ee34785ddb8555cf0ae042718803e93</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqHwCUj-gZSxY9fuEpVHKrWCBawjdzKhKU2M7DSif09KK7asRpq550pzGLsVMBYgxZ3DOMY1NY3rKIwFghBKnLFEaAmpBpDnLAE7NakyenLJrmLcwJABaRO2zPdlcF3tW-7aks99WyOf-bbc4e9ySbh2bR2byH3Fc_p2H751W_5Kwffxs-6IP1Co-6Gip3jNLiq3jXRzmiP2_vT4NsvTxcvzfHa_SJ0C26UZSW3QaIWlNIjGVAonQpkKSK60tQqIMmWsLsuV1VpjBY5ASSOshYym2YjpYy8GH2OgqvgKdePCvhBQHJwUg5Piz0lxcjJw4sgdzhu_C8Mr8R_mB17Vakk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hydration and Ionic Conduction Mechanisms of Hexagonal Perovskite Derivatives</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Fop, Sacha ; Dawson, James A ; Fortes, Andrew Dominic ; Ritter, Clemens ; McLaughlin, Abbie C</creator><creatorcontrib>Fop, Sacha ; Dawson, James A ; Fortes, Andrew Dominic ; Ritter, Clemens ; McLaughlin, Abbie C</creatorcontrib><description>High ionic conductivity has been recently reported in hexagonal perovskite derivative materials. These systems constitute a promising class of novel electrolytes for application in hydrogen-based energy technologies. Herein, we performed the first in situ hydration neutron diffraction experiments and atomistic calculations for the determination of the water absorption and ionic conduction mechanisms in the dual-ion conductor Ba7Nb4MoO20. Our results demonstrate a remarkable mechanism of water uptake and proton incorporation, assisted by the ability of the structure of accommodating substantial stacking and anion disorder. Simulations show high dynamic and rotational flexibility of the variable coordination MO x units, a crucial factor in enabling fast ionic transport along the palmierite-like layers. Such flexibility contributes to delocalization of the proton defects and to the creation of a frustrated proton sublattice with high proton mobility and low energy diffusion pathways. These insights provide design principles for the discovery of innovative ionic conductors crystallizing in related hexagonal systems or disordered oxide structures.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.1c01141</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2021-06, Vol.33 (12), p.4651-4660</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-3e257c754cd27cc77f4c6147f0e2b58840ee34785ddb8555cf0ae042718803e93</citedby><cites>FETCH-LOGICAL-a408t-3e257c754cd27cc77f4c6147f0e2b58840ee34785ddb8555cf0ae042718803e93</cites><orcidid>0000-0003-4168-6363 ; 0000-0001-9960-723X ; 0000-0001-5907-2285 ; 0000-0002-3946-5337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fop, Sacha</creatorcontrib><creatorcontrib>Dawson, James A</creatorcontrib><creatorcontrib>Fortes, Andrew Dominic</creatorcontrib><creatorcontrib>Ritter, Clemens</creatorcontrib><creatorcontrib>McLaughlin, Abbie C</creatorcontrib><title>Hydration and Ionic Conduction Mechanisms of Hexagonal Perovskite Derivatives</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>High ionic conductivity has been recently reported in hexagonal perovskite derivative materials. These systems constitute a promising class of novel electrolytes for application in hydrogen-based energy technologies. Herein, we performed the first in situ hydration neutron diffraction experiments and atomistic calculations for the determination of the water absorption and ionic conduction mechanisms in the dual-ion conductor Ba7Nb4MoO20. Our results demonstrate a remarkable mechanism of water uptake and proton incorporation, assisted by the ability of the structure of accommodating substantial stacking and anion disorder. Simulations show high dynamic and rotational flexibility of the variable coordination MO x units, a crucial factor in enabling fast ionic transport along the palmierite-like layers. Such flexibility contributes to delocalization of the proton defects and to the creation of a frustrated proton sublattice with high proton mobility and low energy diffusion pathways. These insights provide design principles for the discovery of innovative ionic conductors crystallizing in related hexagonal systems or disordered oxide structures.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqHwCUj-gZSxY9fuEpVHKrWCBawjdzKhKU2M7DSif09KK7asRpq550pzGLsVMBYgxZ3DOMY1NY3rKIwFghBKnLFEaAmpBpDnLAE7NakyenLJrmLcwJABaRO2zPdlcF3tW-7aks99WyOf-bbc4e9ySbh2bR2byH3Fc_p2H751W_5Kwffxs-6IP1Co-6Gip3jNLiq3jXRzmiP2_vT4NsvTxcvzfHa_SJ0C26UZSW3QaIWlNIjGVAonQpkKSK60tQqIMmWsLsuV1VpjBY5ASSOshYym2YjpYy8GH2OgqvgKdePCvhBQHJwUg5Piz0lxcjJw4sgdzhu_C8Mr8R_mB17Vakk</recordid><startdate>20210622</startdate><enddate>20210622</enddate><creator>Fop, Sacha</creator><creator>Dawson, James A</creator><creator>Fortes, Andrew Dominic</creator><creator>Ritter, Clemens</creator><creator>McLaughlin, Abbie C</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4168-6363</orcidid><orcidid>https://orcid.org/0000-0001-9960-723X</orcidid><orcidid>https://orcid.org/0000-0001-5907-2285</orcidid><orcidid>https://orcid.org/0000-0002-3946-5337</orcidid></search><sort><creationdate>20210622</creationdate><title>Hydration and Ionic Conduction Mechanisms of Hexagonal Perovskite Derivatives</title><author>Fop, Sacha ; Dawson, James A ; Fortes, Andrew Dominic ; Ritter, Clemens ; McLaughlin, Abbie C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-3e257c754cd27cc77f4c6147f0e2b58840ee34785ddb8555cf0ae042718803e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fop, Sacha</creatorcontrib><creatorcontrib>Dawson, James A</creatorcontrib><creatorcontrib>Fortes, Andrew Dominic</creatorcontrib><creatorcontrib>Ritter, Clemens</creatorcontrib><creatorcontrib>McLaughlin, Abbie C</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fop, Sacha</au><au>Dawson, James A</au><au>Fortes, Andrew Dominic</au><au>Ritter, Clemens</au><au>McLaughlin, Abbie C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydration and Ionic Conduction Mechanisms of Hexagonal Perovskite Derivatives</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2021-06-22</date><risdate>2021</risdate><volume>33</volume><issue>12</issue><spage>4651</spage><epage>4660</epage><pages>4651-4660</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>High ionic conductivity has been recently reported in hexagonal perovskite derivative materials. These systems constitute a promising class of novel electrolytes for application in hydrogen-based energy technologies. Herein, we performed the first in situ hydration neutron diffraction experiments and atomistic calculations for the determination of the water absorption and ionic conduction mechanisms in the dual-ion conductor Ba7Nb4MoO20. Our results demonstrate a remarkable mechanism of water uptake and proton incorporation, assisted by the ability of the structure of accommodating substantial stacking and anion disorder. Simulations show high dynamic and rotational flexibility of the variable coordination MO x units, a crucial factor in enabling fast ionic transport along the palmierite-like layers. Such flexibility contributes to delocalization of the proton defects and to the creation of a frustrated proton sublattice with high proton mobility and low energy diffusion pathways. These insights provide design principles for the discovery of innovative ionic conductors crystallizing in related hexagonal systems or disordered oxide structures.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.1c01141</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4168-6363</orcidid><orcidid>https://orcid.org/0000-0001-9960-723X</orcidid><orcidid>https://orcid.org/0000-0001-5907-2285</orcidid><orcidid>https://orcid.org/0000-0002-3946-5337</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2021-06, Vol.33 (12), p.4651-4660
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_acs_chemmater_1c01141
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Hydration and Ionic Conduction Mechanisms of Hexagonal Perovskite Derivatives
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A06%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydration%20and%20Ionic%20Conduction%20Mechanisms%20of%20Hexagonal%20Perovskite%20Derivatives&rft.jtitle=Chemistry%20of%20materials&rft.au=Fop,%20Sacha&rft.date=2021-06-22&rft.volume=33&rft.issue=12&rft.spage=4651&rft.epage=4660&rft.pages=4651-4660&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.1c01141&rft_dat=%3Cacs_cross%3Eb570370592%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a408t-3e257c754cd27cc77f4c6147f0e2b58840ee34785ddb8555cf0ae042718803e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true