Loading…
Two-Dimensional Borocarbonitride Nanosheet-Engineered Hydrogel as an All-In-One Platform for Melanoma Therapy and Skin Regeneration
The postoperative tumor recurrence and repairing skin defects in clinical melanoma therapy remain challenging. Recent years have seen the development of visible-to-near-infrared (NIR) light for melanoma therapy or tissue regeneration. For solving the integrated issue of melanoma treatment and skin w...
Saved in:
Published in: | Chemistry of materials 2022-07, Vol.34 (14), p.6568-6581 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The postoperative tumor recurrence and repairing skin defects in clinical melanoma therapy remain challenging. Recent years have seen the development of visible-to-near-infrared (NIR) light for melanoma therapy or tissue regeneration. For solving the integrated issue of melanoma treatment and skin wounds repair, a gentle and efficient strategy is essential to utilize the multifunction of light. Here, we presented a new light-mediation concept and reported a light-responsive intelligent hydrogel system by introducing two-dimensional (2D) borocarbonitride (BCN) nanosheets into the methacrylated hyaluronic acid (HA) matrix (HA@BCN). The hydrogel was skillfully fabricated under the activation of blue light and exhibited excellent biocompatibility, mechanical robustness, and biodegradability, and then, a gentle and powerful multifunction for cutaneous melanoma therapy and wound healing under NIR light irradiation was performed. Based on this result, multifunctional hydrogels could be triggered by NIR light (0.35 W/cm2) for killing tumor cells, at least an 80% mortality rate in 10 min. Subsequently, the HA@BCN hydrogel could release more boron moieties as the growth promoter under moderate NIR light irradiation, which largely accelerated the wound healing. Therefore, our discovery presented a light-mediated and 2D nanomaterial-functionalized versatile hydrogel system for cutaneous melanoma photothermal therapy. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/acs.chemmater.2c01457 |