Loading…

Engineering the Surface Chemistry of Colloidal InP Quantum Dots for Charge Transport

Colloidal InP quantum dots (QDs) have emerged as potential candidates for constructing nontoxic QD-based optoelectronic devices. However, charge transport in InP QD thin-film assemblies has been limitedly explored. Herein, we report the synthesis of ∼8 nm edge length (∼6.5 nm in height), tetrahedral...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2022-09, Vol.34 (18), p.8306-8315
Main Authors: Zhao, Tianshuo, Zhao, Qinghua, Lee, Jaeyoung, Yang, Shengsong, Wang, Han, Chuang, Ming-Yuan, He, Yulian, Thompson, Sarah M., Liu, Guannan, Oh, Nuri, Murray, Christopher B., Kagan, Cherie R.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a295t-d781198e17e6d10cf1e147f8d5f2aa80752e81b0ad1da465a23925865d0032743
cites cdi_FETCH-LOGICAL-a295t-d781198e17e6d10cf1e147f8d5f2aa80752e81b0ad1da465a23925865d0032743
container_end_page 8315
container_issue 18
container_start_page 8306
container_title Chemistry of materials
container_volume 34
creator Zhao, Tianshuo
Zhao, Qinghua
Lee, Jaeyoung
Yang, Shengsong
Wang, Han
Chuang, Ming-Yuan
He, Yulian
Thompson, Sarah M.
Liu, Guannan
Oh, Nuri
Murray, Christopher B.
Kagan, Cherie R.
description Colloidal InP quantum dots (QDs) have emerged as potential candidates for constructing nontoxic QD-based optoelectronic devices. However, charge transport in InP QD thin-film assemblies has been limitedly explored. Herein, we report the synthesis of ∼8 nm edge length (∼6.5 nm in height), tetrahedral InP QDs and study charge transport in thin films using the platform of the field-effect transistor (FET). We design a hybrid ligand-exchange strategy that combines solution-based exchange with S2– and solid-state exchange with N3 – to enhance interdot coupling and control the n-doping of InP QD films. Further modifying the QD surface with thin, thermally evaporated Se overlayers yields FETs with an average electron mobility of 0.45 cm2 V–1 s–1, ∼10 times that of previously reported devices, and a higher on–off current ratio of 103–104. Analytical measurements suggest lower trap-state densities and longer carrier lifetimes in the Se-modified InP QD films, giving rise to a four-time longer carrier diffusion length.
doi_str_mv 10.1021/acs.chemmater.2c01840
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_2c01840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c247097436</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-d781198e17e6d10cf1e147f8d5f2aa80752e81b0ad1da465a23925865d0032743</originalsourceid><addsrcrecordid>eNqFkEFOwzAQRS0EEqVwBCRfIGXGjRNniUKhlSoBoqyjIbbbVElc2c6itydVK7asZvHnfX09xh4RZggCn6gOs3pnuo6i8TNRA6oUrtgEpYBEAohrNgFV5Emay-yW3YWwB8ARVRO2WfTbpjfGN_2Wx53hX4O3VBtejoVNiP7IneWla1vXaGr5qv_gnwP1cej4i4uBW-fHX_Jbwzee-nBwPt6zG0ttMA-XO2Xfr4tNuUzW72-r8nmdkChkTHSuEAtlMDeZRqgtGkxzq7S0gkhBLoVR-AOkUVOaSRLzQkiVSQ0wF3k6nzJ57q29C8EbWx1805E_VgjVSU01qqn-1FQXNSOHZ-4U793g-3HlP8wv_JBr6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Engineering the Surface Chemistry of Colloidal InP Quantum Dots for Charge Transport</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zhao, Tianshuo ; Zhao, Qinghua ; Lee, Jaeyoung ; Yang, Shengsong ; Wang, Han ; Chuang, Ming-Yuan ; He, Yulian ; Thompson, Sarah M. ; Liu, Guannan ; Oh, Nuri ; Murray, Christopher B. ; Kagan, Cherie R.</creator><creatorcontrib>Zhao, Tianshuo ; Zhao, Qinghua ; Lee, Jaeyoung ; Yang, Shengsong ; Wang, Han ; Chuang, Ming-Yuan ; He, Yulian ; Thompson, Sarah M. ; Liu, Guannan ; Oh, Nuri ; Murray, Christopher B. ; Kagan, Cherie R.</creatorcontrib><description>Colloidal InP quantum dots (QDs) have emerged as potential candidates for constructing nontoxic QD-based optoelectronic devices. However, charge transport in InP QD thin-film assemblies has been limitedly explored. Herein, we report the synthesis of ∼8 nm edge length (∼6.5 nm in height), tetrahedral InP QDs and study charge transport in thin films using the platform of the field-effect transistor (FET). We design a hybrid ligand-exchange strategy that combines solution-based exchange with S2– and solid-state exchange with N3 – to enhance interdot coupling and control the n-doping of InP QD films. Further modifying the QD surface with thin, thermally evaporated Se overlayers yields FETs with an average electron mobility of 0.45 cm2 V–1 s–1, ∼10 times that of previously reported devices, and a higher on–off current ratio of 103–104. Analytical measurements suggest lower trap-state densities and longer carrier lifetimes in the Se-modified InP QD films, giving rise to a four-time longer carrier diffusion length.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.2c01840</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2022-09, Vol.34 (18), p.8306-8315</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-d781198e17e6d10cf1e147f8d5f2aa80752e81b0ad1da465a23925865d0032743</citedby><cites>FETCH-LOGICAL-a295t-d781198e17e6d10cf1e147f8d5f2aa80752e81b0ad1da465a23925865d0032743</cites><orcidid>0000-0003-3952-7603 ; 0000-0001-6540-2009 ; 0000-0001-5483-1203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhao, Tianshuo</creatorcontrib><creatorcontrib>Zhao, Qinghua</creatorcontrib><creatorcontrib>Lee, Jaeyoung</creatorcontrib><creatorcontrib>Yang, Shengsong</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Chuang, Ming-Yuan</creatorcontrib><creatorcontrib>He, Yulian</creatorcontrib><creatorcontrib>Thompson, Sarah M.</creatorcontrib><creatorcontrib>Liu, Guannan</creatorcontrib><creatorcontrib>Oh, Nuri</creatorcontrib><creatorcontrib>Murray, Christopher B.</creatorcontrib><creatorcontrib>Kagan, Cherie R.</creatorcontrib><title>Engineering the Surface Chemistry of Colloidal InP Quantum Dots for Charge Transport</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Colloidal InP quantum dots (QDs) have emerged as potential candidates for constructing nontoxic QD-based optoelectronic devices. However, charge transport in InP QD thin-film assemblies has been limitedly explored. Herein, we report the synthesis of ∼8 nm edge length (∼6.5 nm in height), tetrahedral InP QDs and study charge transport in thin films using the platform of the field-effect transistor (FET). We design a hybrid ligand-exchange strategy that combines solution-based exchange with S2– and solid-state exchange with N3 – to enhance interdot coupling and control the n-doping of InP QD films. Further modifying the QD surface with thin, thermally evaporated Se overlayers yields FETs with an average electron mobility of 0.45 cm2 V–1 s–1, ∼10 times that of previously reported devices, and a higher on–off current ratio of 103–104. Analytical measurements suggest lower trap-state densities and longer carrier lifetimes in the Se-modified InP QD films, giving rise to a four-time longer carrier diffusion length.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEFOwzAQRS0EEqVwBCRfIGXGjRNniUKhlSoBoqyjIbbbVElc2c6itydVK7asZvHnfX09xh4RZggCn6gOs3pnuo6i8TNRA6oUrtgEpYBEAohrNgFV5Emay-yW3YWwB8ARVRO2WfTbpjfGN_2Wx53hX4O3VBtejoVNiP7IneWla1vXaGr5qv_gnwP1cej4i4uBW-fHX_Jbwzee-nBwPt6zG0ttMA-XO2Xfr4tNuUzW72-r8nmdkChkTHSuEAtlMDeZRqgtGkxzq7S0gkhBLoVR-AOkUVOaSRLzQkiVSQ0wF3k6nzJ57q29C8EbWx1805E_VgjVSU01qqn-1FQXNSOHZ-4U793g-3HlP8wv_JBr6Q</recordid><startdate>20220927</startdate><enddate>20220927</enddate><creator>Zhao, Tianshuo</creator><creator>Zhao, Qinghua</creator><creator>Lee, Jaeyoung</creator><creator>Yang, Shengsong</creator><creator>Wang, Han</creator><creator>Chuang, Ming-Yuan</creator><creator>He, Yulian</creator><creator>Thompson, Sarah M.</creator><creator>Liu, Guannan</creator><creator>Oh, Nuri</creator><creator>Murray, Christopher B.</creator><creator>Kagan, Cherie R.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3952-7603</orcidid><orcidid>https://orcid.org/0000-0001-6540-2009</orcidid><orcidid>https://orcid.org/0000-0001-5483-1203</orcidid></search><sort><creationdate>20220927</creationdate><title>Engineering the Surface Chemistry of Colloidal InP Quantum Dots for Charge Transport</title><author>Zhao, Tianshuo ; Zhao, Qinghua ; Lee, Jaeyoung ; Yang, Shengsong ; Wang, Han ; Chuang, Ming-Yuan ; He, Yulian ; Thompson, Sarah M. ; Liu, Guannan ; Oh, Nuri ; Murray, Christopher B. ; Kagan, Cherie R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-d781198e17e6d10cf1e147f8d5f2aa80752e81b0ad1da465a23925865d0032743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Tianshuo</creatorcontrib><creatorcontrib>Zhao, Qinghua</creatorcontrib><creatorcontrib>Lee, Jaeyoung</creatorcontrib><creatorcontrib>Yang, Shengsong</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Chuang, Ming-Yuan</creatorcontrib><creatorcontrib>He, Yulian</creatorcontrib><creatorcontrib>Thompson, Sarah M.</creatorcontrib><creatorcontrib>Liu, Guannan</creatorcontrib><creatorcontrib>Oh, Nuri</creatorcontrib><creatorcontrib>Murray, Christopher B.</creatorcontrib><creatorcontrib>Kagan, Cherie R.</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Tianshuo</au><au>Zhao, Qinghua</au><au>Lee, Jaeyoung</au><au>Yang, Shengsong</au><au>Wang, Han</au><au>Chuang, Ming-Yuan</au><au>He, Yulian</au><au>Thompson, Sarah M.</au><au>Liu, Guannan</au><au>Oh, Nuri</au><au>Murray, Christopher B.</au><au>Kagan, Cherie R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering the Surface Chemistry of Colloidal InP Quantum Dots for Charge Transport</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2022-09-27</date><risdate>2022</risdate><volume>34</volume><issue>18</issue><spage>8306</spage><epage>8315</epage><pages>8306-8315</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Colloidal InP quantum dots (QDs) have emerged as potential candidates for constructing nontoxic QD-based optoelectronic devices. However, charge transport in InP QD thin-film assemblies has been limitedly explored. Herein, we report the synthesis of ∼8 nm edge length (∼6.5 nm in height), tetrahedral InP QDs and study charge transport in thin films using the platform of the field-effect transistor (FET). We design a hybrid ligand-exchange strategy that combines solution-based exchange with S2– and solid-state exchange with N3 – to enhance interdot coupling and control the n-doping of InP QD films. Further modifying the QD surface with thin, thermally evaporated Se overlayers yields FETs with an average electron mobility of 0.45 cm2 V–1 s–1, ∼10 times that of previously reported devices, and a higher on–off current ratio of 103–104. Analytical measurements suggest lower trap-state densities and longer carrier lifetimes in the Se-modified InP QD films, giving rise to a four-time longer carrier diffusion length.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.2c01840</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3952-7603</orcidid><orcidid>https://orcid.org/0000-0001-6540-2009</orcidid><orcidid>https://orcid.org/0000-0001-5483-1203</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2022-09, Vol.34 (18), p.8306-8315
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_acs_chemmater_2c01840
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Engineering the Surface Chemistry of Colloidal InP Quantum Dots for Charge Transport
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A16%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20the%20Surface%20Chemistry%20of%20Colloidal%20InP%20Quantum%20Dots%20for%20Charge%20Transport&rft.jtitle=Chemistry%20of%20materials&rft.au=Zhao,%20Tianshuo&rft.date=2022-09-27&rft.volume=34&rft.issue=18&rft.spage=8306&rft.epage=8315&rft.pages=8306-8315&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.2c01840&rft_dat=%3Cacs_cross%3Ec247097436%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a295t-d781198e17e6d10cf1e147f8d5f2aa80752e81b0ad1da465a23925865d0032743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true