Loading…
Engineering the Surface Chemistry of Colloidal InP Quantum Dots for Charge Transport
Colloidal InP quantum dots (QDs) have emerged as potential candidates for constructing nontoxic QD-based optoelectronic devices. However, charge transport in InP QD thin-film assemblies has been limitedly explored. Herein, we report the synthesis of ∼8 nm edge length (∼6.5 nm in height), tetrahedral...
Saved in:
Published in: | Chemistry of materials 2022-09, Vol.34 (18), p.8306-8315 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a295t-d781198e17e6d10cf1e147f8d5f2aa80752e81b0ad1da465a23925865d0032743 |
---|---|
cites | cdi_FETCH-LOGICAL-a295t-d781198e17e6d10cf1e147f8d5f2aa80752e81b0ad1da465a23925865d0032743 |
container_end_page | 8315 |
container_issue | 18 |
container_start_page | 8306 |
container_title | Chemistry of materials |
container_volume | 34 |
creator | Zhao, Tianshuo Zhao, Qinghua Lee, Jaeyoung Yang, Shengsong Wang, Han Chuang, Ming-Yuan He, Yulian Thompson, Sarah M. Liu, Guannan Oh, Nuri Murray, Christopher B. Kagan, Cherie R. |
description | Colloidal InP quantum dots (QDs) have emerged as potential candidates for constructing nontoxic QD-based optoelectronic devices. However, charge transport in InP QD thin-film assemblies has been limitedly explored. Herein, we report the synthesis of ∼8 nm edge length (∼6.5 nm in height), tetrahedral InP QDs and study charge transport in thin films using the platform of the field-effect transistor (FET). We design a hybrid ligand-exchange strategy that combines solution-based exchange with S2– and solid-state exchange with N3 – to enhance interdot coupling and control the n-doping of InP QD films. Further modifying the QD surface with thin, thermally evaporated Se overlayers yields FETs with an average electron mobility of 0.45 cm2 V–1 s–1, ∼10 times that of previously reported devices, and a higher on–off current ratio of 103–104. Analytical measurements suggest lower trap-state densities and longer carrier lifetimes in the Se-modified InP QD films, giving rise to a four-time longer carrier diffusion length. |
doi_str_mv | 10.1021/acs.chemmater.2c01840 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_2c01840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c247097436</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-d781198e17e6d10cf1e147f8d5f2aa80752e81b0ad1da465a23925865d0032743</originalsourceid><addsrcrecordid>eNqFkEFOwzAQRS0EEqVwBCRfIGXGjRNniUKhlSoBoqyjIbbbVElc2c6itydVK7asZvHnfX09xh4RZggCn6gOs3pnuo6i8TNRA6oUrtgEpYBEAohrNgFV5Emay-yW3YWwB8ARVRO2WfTbpjfGN_2Wx53hX4O3VBtejoVNiP7IneWla1vXaGr5qv_gnwP1cej4i4uBW-fHX_Jbwzee-nBwPt6zG0ttMA-XO2Xfr4tNuUzW72-r8nmdkChkTHSuEAtlMDeZRqgtGkxzq7S0gkhBLoVR-AOkUVOaSRLzQkiVSQ0wF3k6nzJ57q29C8EbWx1805E_VgjVSU01qqn-1FQXNSOHZ-4U793g-3HlP8wv_JBr6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Engineering the Surface Chemistry of Colloidal InP Quantum Dots for Charge Transport</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Zhao, Tianshuo ; Zhao, Qinghua ; Lee, Jaeyoung ; Yang, Shengsong ; Wang, Han ; Chuang, Ming-Yuan ; He, Yulian ; Thompson, Sarah M. ; Liu, Guannan ; Oh, Nuri ; Murray, Christopher B. ; Kagan, Cherie R.</creator><creatorcontrib>Zhao, Tianshuo ; Zhao, Qinghua ; Lee, Jaeyoung ; Yang, Shengsong ; Wang, Han ; Chuang, Ming-Yuan ; He, Yulian ; Thompson, Sarah M. ; Liu, Guannan ; Oh, Nuri ; Murray, Christopher B. ; Kagan, Cherie R.</creatorcontrib><description>Colloidal InP quantum dots (QDs) have emerged as potential candidates for constructing nontoxic QD-based optoelectronic devices. However, charge transport in InP QD thin-film assemblies has been limitedly explored. Herein, we report the synthesis of ∼8 nm edge length (∼6.5 nm in height), tetrahedral InP QDs and study charge transport in thin films using the platform of the field-effect transistor (FET). We design a hybrid ligand-exchange strategy that combines solution-based exchange with S2– and solid-state exchange with N3 – to enhance interdot coupling and control the n-doping of InP QD films. Further modifying the QD surface with thin, thermally evaporated Se overlayers yields FETs with an average electron mobility of 0.45 cm2 V–1 s–1, ∼10 times that of previously reported devices, and a higher on–off current ratio of 103–104. Analytical measurements suggest lower trap-state densities and longer carrier lifetimes in the Se-modified InP QD films, giving rise to a four-time longer carrier diffusion length.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.2c01840</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2022-09, Vol.34 (18), p.8306-8315</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-d781198e17e6d10cf1e147f8d5f2aa80752e81b0ad1da465a23925865d0032743</citedby><cites>FETCH-LOGICAL-a295t-d781198e17e6d10cf1e147f8d5f2aa80752e81b0ad1da465a23925865d0032743</cites><orcidid>0000-0003-3952-7603 ; 0000-0001-6540-2009 ; 0000-0001-5483-1203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhao, Tianshuo</creatorcontrib><creatorcontrib>Zhao, Qinghua</creatorcontrib><creatorcontrib>Lee, Jaeyoung</creatorcontrib><creatorcontrib>Yang, Shengsong</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Chuang, Ming-Yuan</creatorcontrib><creatorcontrib>He, Yulian</creatorcontrib><creatorcontrib>Thompson, Sarah M.</creatorcontrib><creatorcontrib>Liu, Guannan</creatorcontrib><creatorcontrib>Oh, Nuri</creatorcontrib><creatorcontrib>Murray, Christopher B.</creatorcontrib><creatorcontrib>Kagan, Cherie R.</creatorcontrib><title>Engineering the Surface Chemistry of Colloidal InP Quantum Dots for Charge Transport</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Colloidal InP quantum dots (QDs) have emerged as potential candidates for constructing nontoxic QD-based optoelectronic devices. However, charge transport in InP QD thin-film assemblies has been limitedly explored. Herein, we report the synthesis of ∼8 nm edge length (∼6.5 nm in height), tetrahedral InP QDs and study charge transport in thin films using the platform of the field-effect transistor (FET). We design a hybrid ligand-exchange strategy that combines solution-based exchange with S2– and solid-state exchange with N3 – to enhance interdot coupling and control the n-doping of InP QD films. Further modifying the QD surface with thin, thermally evaporated Se overlayers yields FETs with an average electron mobility of 0.45 cm2 V–1 s–1, ∼10 times that of previously reported devices, and a higher on–off current ratio of 103–104. Analytical measurements suggest lower trap-state densities and longer carrier lifetimes in the Se-modified InP QD films, giving rise to a four-time longer carrier diffusion length.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEFOwzAQRS0EEqVwBCRfIGXGjRNniUKhlSoBoqyjIbbbVElc2c6itydVK7asZvHnfX09xh4RZggCn6gOs3pnuo6i8TNRA6oUrtgEpYBEAohrNgFV5Emay-yW3YWwB8ARVRO2WfTbpjfGN_2Wx53hX4O3VBtejoVNiP7IneWla1vXaGr5qv_gnwP1cej4i4uBW-fHX_Jbwzee-nBwPt6zG0ttMA-XO2Xfr4tNuUzW72-r8nmdkChkTHSuEAtlMDeZRqgtGkxzq7S0gkhBLoVR-AOkUVOaSRLzQkiVSQ0wF3k6nzJ57q29C8EbWx1805E_VgjVSU01qqn-1FQXNSOHZ-4U793g-3HlP8wv_JBr6Q</recordid><startdate>20220927</startdate><enddate>20220927</enddate><creator>Zhao, Tianshuo</creator><creator>Zhao, Qinghua</creator><creator>Lee, Jaeyoung</creator><creator>Yang, Shengsong</creator><creator>Wang, Han</creator><creator>Chuang, Ming-Yuan</creator><creator>He, Yulian</creator><creator>Thompson, Sarah M.</creator><creator>Liu, Guannan</creator><creator>Oh, Nuri</creator><creator>Murray, Christopher B.</creator><creator>Kagan, Cherie R.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3952-7603</orcidid><orcidid>https://orcid.org/0000-0001-6540-2009</orcidid><orcidid>https://orcid.org/0000-0001-5483-1203</orcidid></search><sort><creationdate>20220927</creationdate><title>Engineering the Surface Chemistry of Colloidal InP Quantum Dots for Charge Transport</title><author>Zhao, Tianshuo ; Zhao, Qinghua ; Lee, Jaeyoung ; Yang, Shengsong ; Wang, Han ; Chuang, Ming-Yuan ; He, Yulian ; Thompson, Sarah M. ; Liu, Guannan ; Oh, Nuri ; Murray, Christopher B. ; Kagan, Cherie R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-d781198e17e6d10cf1e147f8d5f2aa80752e81b0ad1da465a23925865d0032743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Tianshuo</creatorcontrib><creatorcontrib>Zhao, Qinghua</creatorcontrib><creatorcontrib>Lee, Jaeyoung</creatorcontrib><creatorcontrib>Yang, Shengsong</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Chuang, Ming-Yuan</creatorcontrib><creatorcontrib>He, Yulian</creatorcontrib><creatorcontrib>Thompson, Sarah M.</creatorcontrib><creatorcontrib>Liu, Guannan</creatorcontrib><creatorcontrib>Oh, Nuri</creatorcontrib><creatorcontrib>Murray, Christopher B.</creatorcontrib><creatorcontrib>Kagan, Cherie R.</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Tianshuo</au><au>Zhao, Qinghua</au><au>Lee, Jaeyoung</au><au>Yang, Shengsong</au><au>Wang, Han</au><au>Chuang, Ming-Yuan</au><au>He, Yulian</au><au>Thompson, Sarah M.</au><au>Liu, Guannan</au><au>Oh, Nuri</au><au>Murray, Christopher B.</au><au>Kagan, Cherie R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering the Surface Chemistry of Colloidal InP Quantum Dots for Charge Transport</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2022-09-27</date><risdate>2022</risdate><volume>34</volume><issue>18</issue><spage>8306</spage><epage>8315</epage><pages>8306-8315</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Colloidal InP quantum dots (QDs) have emerged as potential candidates for constructing nontoxic QD-based optoelectronic devices. However, charge transport in InP QD thin-film assemblies has been limitedly explored. Herein, we report the synthesis of ∼8 nm edge length (∼6.5 nm in height), tetrahedral InP QDs and study charge transport in thin films using the platform of the field-effect transistor (FET). We design a hybrid ligand-exchange strategy that combines solution-based exchange with S2– and solid-state exchange with N3 – to enhance interdot coupling and control the n-doping of InP QD films. Further modifying the QD surface with thin, thermally evaporated Se overlayers yields FETs with an average electron mobility of 0.45 cm2 V–1 s–1, ∼10 times that of previously reported devices, and a higher on–off current ratio of 103–104. Analytical measurements suggest lower trap-state densities and longer carrier lifetimes in the Se-modified InP QD films, giving rise to a four-time longer carrier diffusion length.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.2c01840</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3952-7603</orcidid><orcidid>https://orcid.org/0000-0001-6540-2009</orcidid><orcidid>https://orcid.org/0000-0001-5483-1203</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2022-09, Vol.34 (18), p.8306-8315 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_chemmater_2c01840 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Engineering the Surface Chemistry of Colloidal InP Quantum Dots for Charge Transport |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A16%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20the%20Surface%20Chemistry%20of%20Colloidal%20InP%20Quantum%20Dots%20for%20Charge%20Transport&rft.jtitle=Chemistry%20of%20materials&rft.au=Zhao,%20Tianshuo&rft.date=2022-09-27&rft.volume=34&rft.issue=18&rft.spage=8306&rft.epage=8315&rft.pages=8306-8315&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.2c01840&rft_dat=%3Cacs_cross%3Ec247097436%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a295t-d781198e17e6d10cf1e147f8d5f2aa80752e81b0ad1da465a23925865d0032743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |