Loading…

Two-Dimensional Metal–Organic Framework Self-Assembly and Defect Engineering Studied via Coarse-Grained Simulations

Metal–organic frameworks (MOFs) are crystalline materials that self-assemble from inorganic nodes and organic linkers, and isoreticular chemistry allows for modular and synthetic reagents of various sizes. In this study, a MOF’s componentsmetal nodes and organic linkersare constructed in a coarse-...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2023-12, Vol.35 (23), p.10050-10059
Main Authors: Scott, Reum N., Frank, Claire E., Martirossyan, Maya M., Milner, Phillip J., Dshemuchadse, Julia
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a295t-11fe82d3251504d684c62eddc2357c5eea90b407b79617949802d273b7a1da753
cites cdi_FETCH-LOGICAL-a295t-11fe82d3251504d684c62eddc2357c5eea90b407b79617949802d273b7a1da753
container_end_page 10059
container_issue 23
container_start_page 10050
container_title Chemistry of materials
container_volume 35
creator Scott, Reum N.
Frank, Claire E.
Martirossyan, Maya M.
Milner, Phillip J.
Dshemuchadse, Julia
description Metal–organic frameworks (MOFs) are crystalline materials that self-assemble from inorganic nodes and organic linkers, and isoreticular chemistry allows for modular and synthetic reagents of various sizes. In this study, a MOF’s componentsmetal nodes and organic linkersare constructed in a coarse-grained model from isotropic beads, retaining the basic symmetries of the molecular components. Lennard-Jones and Weeks–Chandler–Andersen pair potentials are used to model attractive and repulsive particle interactions, respectively. We analyze the crystallinity of the self-assembled products and explore the role of modulatorsmolecules that compete with the organic linkers in binding to the metal nodes, and which we construct analogouslyduring the self-assembly process of defect-engineered MOFs. The coarse-grained simulation allows for the uncoupling of experimentally interdependent variables to broadly map and determine essential MOF self-assembly conditions, among which are properties of the modulator: binding strength, size (steric hindrance), and concentration. Of these, the simulated modulator’s binding strength has the most pronounced effect on the resulting MOF’s crystal size.
doi_str_mv 10.1021/acs.chemmater.3c02049
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_3c02049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b021265321</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-11fe82d3251504d684c62eddc2357c5eea90b407b79617949802d273b7a1da753</originalsourceid><addsrcrecordid>eNqFkEtOwzAURS0EEqWwBCRvwMV24jgZVv2BVMSgZRy92C_FJR9kp1SdsQd2yEpI1Yopozu4OvdKh5B7wUeCS_EAJozMG9Y1dOhHkeGSx9kFGQglOVOcy0sy4GmmWaxVck1uQthyLno0HZDdet-yqauxCa5toKLP2EH18_X94jfQOEPnHmrct_6drrAq2TgErIvqQKGxdIolmo7Omo1rEL1rNnTV7axDSz8d0EkLPiBbeOhrS1eu3lXQ9TfhllyVUAW8O-eQvM5n68kjW74snibjJQOZqY4JUWIqbSSVUDy2SRqbRKK1RkZKG4UIGS9irgudJUJncZZyaaWOCg3CglbRkKjTrvFtCB7L_MO7GvwhFzw_ust7d_mfu_zsrufEiTvW23bnezPhH-YXW-Z5fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Two-Dimensional Metal–Organic Framework Self-Assembly and Defect Engineering Studied via Coarse-Grained Simulations</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Scott, Reum N. ; Frank, Claire E. ; Martirossyan, Maya M. ; Milner, Phillip J. ; Dshemuchadse, Julia</creator><creatorcontrib>Scott, Reum N. ; Frank, Claire E. ; Martirossyan, Maya M. ; Milner, Phillip J. ; Dshemuchadse, Julia</creatorcontrib><description>Metal–organic frameworks (MOFs) are crystalline materials that self-assemble from inorganic nodes and organic linkers, and isoreticular chemistry allows for modular and synthetic reagents of various sizes. In this study, a MOF’s componentsmetal nodes and organic linkersare constructed in a coarse-grained model from isotropic beads, retaining the basic symmetries of the molecular components. Lennard-Jones and Weeks–Chandler–Andersen pair potentials are used to model attractive and repulsive particle interactions, respectively. We analyze the crystallinity of the self-assembled products and explore the role of modulatorsmolecules that compete with the organic linkers in binding to the metal nodes, and which we construct analogouslyduring the self-assembly process of defect-engineered MOFs. The coarse-grained simulation allows for the uncoupling of experimentally interdependent variables to broadly map and determine essential MOF self-assembly conditions, among which are properties of the modulator: binding strength, size (steric hindrance), and concentration. Of these, the simulated modulator’s binding strength has the most pronounced effect on the resulting MOF’s crystal size.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.3c02049</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2023-12, Vol.35 (23), p.10050-10059</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-11fe82d3251504d684c62eddc2357c5eea90b407b79617949802d273b7a1da753</citedby><cites>FETCH-LOGICAL-a295t-11fe82d3251504d684c62eddc2357c5eea90b407b79617949802d273b7a1da753</cites><orcidid>0000-0001-9248-7538 ; 0000-0002-2618-013X ; 0000-0003-2310-6687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Scott, Reum N.</creatorcontrib><creatorcontrib>Frank, Claire E.</creatorcontrib><creatorcontrib>Martirossyan, Maya M.</creatorcontrib><creatorcontrib>Milner, Phillip J.</creatorcontrib><creatorcontrib>Dshemuchadse, Julia</creatorcontrib><title>Two-Dimensional Metal–Organic Framework Self-Assembly and Defect Engineering Studied via Coarse-Grained Simulations</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Metal–organic frameworks (MOFs) are crystalline materials that self-assemble from inorganic nodes and organic linkers, and isoreticular chemistry allows for modular and synthetic reagents of various sizes. In this study, a MOF’s componentsmetal nodes and organic linkersare constructed in a coarse-grained model from isotropic beads, retaining the basic symmetries of the molecular components. Lennard-Jones and Weeks–Chandler–Andersen pair potentials are used to model attractive and repulsive particle interactions, respectively. We analyze the crystallinity of the self-assembled products and explore the role of modulatorsmolecules that compete with the organic linkers in binding to the metal nodes, and which we construct analogouslyduring the self-assembly process of defect-engineered MOFs. The coarse-grained simulation allows for the uncoupling of experimentally interdependent variables to broadly map and determine essential MOF self-assembly conditions, among which are properties of the modulator: binding strength, size (steric hindrance), and concentration. Of these, the simulated modulator’s binding strength has the most pronounced effect on the resulting MOF’s crystal size.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkEtOwzAURS0EEqWwBCRvwMV24jgZVv2BVMSgZRy92C_FJR9kp1SdsQd2yEpI1Yopozu4OvdKh5B7wUeCS_EAJozMG9Y1dOhHkeGSx9kFGQglOVOcy0sy4GmmWaxVck1uQthyLno0HZDdet-yqauxCa5toKLP2EH18_X94jfQOEPnHmrct_6drrAq2TgErIvqQKGxdIolmo7Omo1rEL1rNnTV7axDSz8d0EkLPiBbeOhrS1eu3lXQ9TfhllyVUAW8O-eQvM5n68kjW74snibjJQOZqY4JUWIqbSSVUDy2SRqbRKK1RkZKG4UIGS9irgudJUJncZZyaaWOCg3CglbRkKjTrvFtCB7L_MO7GvwhFzw_ust7d_mfu_zsrufEiTvW23bnezPhH-YXW-Z5fw</recordid><startdate>20231212</startdate><enddate>20231212</enddate><creator>Scott, Reum N.</creator><creator>Frank, Claire E.</creator><creator>Martirossyan, Maya M.</creator><creator>Milner, Phillip J.</creator><creator>Dshemuchadse, Julia</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9248-7538</orcidid><orcidid>https://orcid.org/0000-0002-2618-013X</orcidid><orcidid>https://orcid.org/0000-0003-2310-6687</orcidid></search><sort><creationdate>20231212</creationdate><title>Two-Dimensional Metal–Organic Framework Self-Assembly and Defect Engineering Studied via Coarse-Grained Simulations</title><author>Scott, Reum N. ; Frank, Claire E. ; Martirossyan, Maya M. ; Milner, Phillip J. ; Dshemuchadse, Julia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-11fe82d3251504d684c62eddc2357c5eea90b407b79617949802d273b7a1da753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scott, Reum N.</creatorcontrib><creatorcontrib>Frank, Claire E.</creatorcontrib><creatorcontrib>Martirossyan, Maya M.</creatorcontrib><creatorcontrib>Milner, Phillip J.</creatorcontrib><creatorcontrib>Dshemuchadse, Julia</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scott, Reum N.</au><au>Frank, Claire E.</au><au>Martirossyan, Maya M.</au><au>Milner, Phillip J.</au><au>Dshemuchadse, Julia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Dimensional Metal–Organic Framework Self-Assembly and Defect Engineering Studied via Coarse-Grained Simulations</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2023-12-12</date><risdate>2023</risdate><volume>35</volume><issue>23</issue><spage>10050</spage><epage>10059</epage><pages>10050-10059</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Metal–organic frameworks (MOFs) are crystalline materials that self-assemble from inorganic nodes and organic linkers, and isoreticular chemistry allows for modular and synthetic reagents of various sizes. In this study, a MOF’s componentsmetal nodes and organic linkersare constructed in a coarse-grained model from isotropic beads, retaining the basic symmetries of the molecular components. Lennard-Jones and Weeks–Chandler–Andersen pair potentials are used to model attractive and repulsive particle interactions, respectively. We analyze the crystallinity of the self-assembled products and explore the role of modulatorsmolecules that compete with the organic linkers in binding to the metal nodes, and which we construct analogouslyduring the self-assembly process of defect-engineered MOFs. The coarse-grained simulation allows for the uncoupling of experimentally interdependent variables to broadly map and determine essential MOF self-assembly conditions, among which are properties of the modulator: binding strength, size (steric hindrance), and concentration. Of these, the simulated modulator’s binding strength has the most pronounced effect on the resulting MOF’s crystal size.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.3c02049</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9248-7538</orcidid><orcidid>https://orcid.org/0000-0002-2618-013X</orcidid><orcidid>https://orcid.org/0000-0003-2310-6687</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2023-12, Vol.35 (23), p.10050-10059
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_acs_chemmater_3c02049
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Two-Dimensional Metal–Organic Framework Self-Assembly and Defect Engineering Studied via Coarse-Grained Simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A12%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Dimensional%20Metal%E2%80%93Organic%20Framework%20Self-Assembly%20and%20Defect%20Engineering%20Studied%20via%20Coarse-Grained%20Simulations&rft.jtitle=Chemistry%20of%20materials&rft.au=Scott,%20Reum%20N.&rft.date=2023-12-12&rft.volume=35&rft.issue=23&rft.spage=10050&rft.epage=10059&rft.pages=10050-10059&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.3c02049&rft_dat=%3Cacs_cross%3Eb021265321%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a295t-11fe82d3251504d684c62eddc2357c5eea90b407b79617949802d273b7a1da753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true