Loading…

Molecular Design of Light-Responsive Hydrogels, For in Situ Generation of Fast and Reversible Valves for Microfluidic Applications

Reversible light-responsive hydrogel valves with response characteristics compatible for microfluidics have been obtained by optimization of molecular design of spiropyran photoswitches and gel composition. Self-protonating gel formulations were exploited, wherein acrylic acid was copolymerized in t...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2015-09, Vol.27 (17), p.5925-5931
Main Authors: ter Schiphorst, Jeroen, Coleman, Simon, Stumpel, Jelle E, Ben Azouz, Aymen, Diamond, Dermot, Schenning, Albertus P. H. J
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reversible light-responsive hydrogel valves with response characteristics compatible for microfluidics have been obtained by optimization of molecular design of spiropyran photoswitches and gel composition. Self-protonating gel formulations were exploited, wherein acrylic acid was copolymerized in the hydrogel network as an internal proton donor, to achieve a swollen state of the hydrogel in water at neutral pH. Light-responsive properties were endowed upon the hydrogels by copolymerization of spiropyran chromophores, using electron withdrawing and donating groups to tune the gel-swelling and shrinkage behavior. In all cases, the shrinkage was determined by the water diffusion rate, while for the swelling the isomerization kinetics is the rate-determining step. For one hydrogel, reversible and reproducible volume changes were observed. Finally, gel-valves integrated within microfluidic channels were fabricated, allowing reversible and repeatable operation, with opening and closing of the valve in minutes.
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.5b01860