Loading…

Bioenabled Core/Shell Microparticles with Tailored Multimodal Adhesion and Optical Reflectivity

Nature provides remarkable examples of mass-produced microscale particles with structures and chemistries optimized by evolution for particular functions. Synthetic chemical tailoring of such sustainable biogenic particles may be used to generate new multifunctional materials. Herein, we report a fa...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2015-11, Vol.27 (21), p.7321-7330
Main Authors: Lin, Haisheng, Allen, Michael C, Wu, Jie, deGlee, Ben M, Shin, Donglee, Cai, Ye, Sandhage, Kenneth H, Deheyn, Dimitri D, Meredith, J. Carson
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a295t-8f9b3038cacd90cddd65c19b7f5d72daf4562b38a8dc4850621a79d15f7cc1073
cites cdi_FETCH-LOGICAL-a295t-8f9b3038cacd90cddd65c19b7f5d72daf4562b38a8dc4850621a79d15f7cc1073
container_end_page 7330
container_issue 21
container_start_page 7321
container_title Chemistry of materials
container_volume 27
creator Lin, Haisheng
Allen, Michael C
Wu, Jie
deGlee, Ben M
Shin, Donglee
Cai, Ye
Sandhage, Kenneth H
Deheyn, Dimitri D
Meredith, J. Carson
description Nature provides remarkable examples of mass-produced microscale particles with structures and chemistries optimized by evolution for particular functions. Synthetic chemical tailoring of such sustainable biogenic particles may be used to generate new multifunctional materials. Herein, we report a facile method for the development of bioenabled core/shell microparticles consisting of surface-modified ragweed pollen with a magnetic core, for which both multimodal adhesion and optical reflectivity can be tailored. Adhesion of the magnetic-core pollen can be tuned, relative to native pollen, through the combination of tailorable short-range interactions (over ∼5 nm, via van der Waals forces and hydrogen bonding), an intermediate-range (over several μm) capillary force, and long-range (over ∼1 mm) magnetic attraction. The magnetic force could be controlled by the amount of iron oxide loaded within the core of the pollen particle, while the short-range interactions and capillary force can be tuned by coating with polystyrene nanoparticles and/or a layer of viscous pollenkitt on the exine shell surface. Such coatings were also used to tailor the optical reflectance of the magnetic pollen particles; that is, the light-reflectance intensity was enhanced by coating with pollenkitt and significantly reduced by coating with polystyrene nanoparticles. This approach for generating multifunctional core/shell microparticles with tailorable adhesion and optical reflectivity may be extended to other pollen or biological particles or to synthetic biomimetic particles. Such independent control of the core and shell chemistries enabled by this approach also allows for the generation of microparticles with a variety of combination in functions tailorable to other properties.
doi_str_mv 10.1021/acs.chemmater.5b02782
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_5b02782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c783877041</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-8f9b3038cacd90cddd65c19b7f5d72daf4562b38a8dc4850621a79d15f7cc1073</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKc_Qcgf6JakTZNezuEXbAx0Xoc0HzQjbUeSKfv3Zmx469WBc97n8PIA8IjRDCOC51LFmepM38tkwoy2iDBOrsAEU4IKihC5BhPEG1ZUjNa34C7GHUI4o3wCxJMbzSBbbzRcjsHMPzvjPVw7Fca9DMkpbyL8camDW-l8Tmi4Pvjk-lFLDxe6M9GNA5SDhpt9juflh7HeqOS-XTregxsrfTQPlzkFXy_P2-Vbsdq8vi8Xq0KShqaC26YtUcmVVLpBSmtdU4WbllmqGdHSVrQmbckl16riFNUES9ZoTC1TCiNWTgE9_829YwzGin1wvQxHgZE4WRLZkvizJC6WMofP3Om8Gw9hyC3_YX4B2GBx_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bioenabled Core/Shell Microparticles with Tailored Multimodal Adhesion and Optical Reflectivity</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Lin, Haisheng ; Allen, Michael C ; Wu, Jie ; deGlee, Ben M ; Shin, Donglee ; Cai, Ye ; Sandhage, Kenneth H ; Deheyn, Dimitri D ; Meredith, J. Carson</creator><creatorcontrib>Lin, Haisheng ; Allen, Michael C ; Wu, Jie ; deGlee, Ben M ; Shin, Donglee ; Cai, Ye ; Sandhage, Kenneth H ; Deheyn, Dimitri D ; Meredith, J. Carson</creatorcontrib><description>Nature provides remarkable examples of mass-produced microscale particles with structures and chemistries optimized by evolution for particular functions. Synthetic chemical tailoring of such sustainable biogenic particles may be used to generate new multifunctional materials. Herein, we report a facile method for the development of bioenabled core/shell microparticles consisting of surface-modified ragweed pollen with a magnetic core, for which both multimodal adhesion and optical reflectivity can be tailored. Adhesion of the magnetic-core pollen can be tuned, relative to native pollen, through the combination of tailorable short-range interactions (over ∼5 nm, via van der Waals forces and hydrogen bonding), an intermediate-range (over several μm) capillary force, and long-range (over ∼1 mm) magnetic attraction. The magnetic force could be controlled by the amount of iron oxide loaded within the core of the pollen particle, while the short-range interactions and capillary force can be tuned by coating with polystyrene nanoparticles and/or a layer of viscous pollenkitt on the exine shell surface. Such coatings were also used to tailor the optical reflectance of the magnetic pollen particles; that is, the light-reflectance intensity was enhanced by coating with pollenkitt and significantly reduced by coating with polystyrene nanoparticles. This approach for generating multifunctional core/shell microparticles with tailorable adhesion and optical reflectivity may be extended to other pollen or biological particles or to synthetic biomimetic particles. Such independent control of the core and shell chemistries enabled by this approach also allows for the generation of microparticles with a variety of combination in functions tailorable to other properties.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.5b02782</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2015-11, Vol.27 (21), p.7321-7330</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-8f9b3038cacd90cddd65c19b7f5d72daf4562b38a8dc4850621a79d15f7cc1073</citedby><cites>FETCH-LOGICAL-a295t-8f9b3038cacd90cddd65c19b7f5d72daf4562b38a8dc4850621a79d15f7cc1073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Lin, Haisheng</creatorcontrib><creatorcontrib>Allen, Michael C</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><creatorcontrib>deGlee, Ben M</creatorcontrib><creatorcontrib>Shin, Donglee</creatorcontrib><creatorcontrib>Cai, Ye</creatorcontrib><creatorcontrib>Sandhage, Kenneth H</creatorcontrib><creatorcontrib>Deheyn, Dimitri D</creatorcontrib><creatorcontrib>Meredith, J. Carson</creatorcontrib><title>Bioenabled Core/Shell Microparticles with Tailored Multimodal Adhesion and Optical Reflectivity</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Nature provides remarkable examples of mass-produced microscale particles with structures and chemistries optimized by evolution for particular functions. Synthetic chemical tailoring of such sustainable biogenic particles may be used to generate new multifunctional materials. Herein, we report a facile method for the development of bioenabled core/shell microparticles consisting of surface-modified ragweed pollen with a magnetic core, for which both multimodal adhesion and optical reflectivity can be tailored. Adhesion of the magnetic-core pollen can be tuned, relative to native pollen, through the combination of tailorable short-range interactions (over ∼5 nm, via van der Waals forces and hydrogen bonding), an intermediate-range (over several μm) capillary force, and long-range (over ∼1 mm) magnetic attraction. The magnetic force could be controlled by the amount of iron oxide loaded within the core of the pollen particle, while the short-range interactions and capillary force can be tuned by coating with polystyrene nanoparticles and/or a layer of viscous pollenkitt on the exine shell surface. Such coatings were also used to tailor the optical reflectance of the magnetic pollen particles; that is, the light-reflectance intensity was enhanced by coating with pollenkitt and significantly reduced by coating with polystyrene nanoparticles. This approach for generating multifunctional core/shell microparticles with tailorable adhesion and optical reflectivity may be extended to other pollen or biological particles or to synthetic biomimetic particles. Such independent control of the core and shell chemistries enabled by this approach also allows for the generation of microparticles with a variety of combination in functions tailorable to other properties.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKc_Qcgf6JakTZNezuEXbAx0Xoc0HzQjbUeSKfv3Zmx469WBc97n8PIA8IjRDCOC51LFmepM38tkwoy2iDBOrsAEU4IKihC5BhPEG1ZUjNa34C7GHUI4o3wCxJMbzSBbbzRcjsHMPzvjPVw7Fca9DMkpbyL8camDW-l8Tmi4Pvjk-lFLDxe6M9GNA5SDhpt9juflh7HeqOS-XTregxsrfTQPlzkFXy_P2-Vbsdq8vi8Xq0KShqaC26YtUcmVVLpBSmtdU4WbllmqGdHSVrQmbckl16riFNUES9ZoTC1TCiNWTgE9_829YwzGin1wvQxHgZE4WRLZkvizJC6WMofP3Om8Gw9hyC3_YX4B2GBx_w</recordid><startdate>20151110</startdate><enddate>20151110</enddate><creator>Lin, Haisheng</creator><creator>Allen, Michael C</creator><creator>Wu, Jie</creator><creator>deGlee, Ben M</creator><creator>Shin, Donglee</creator><creator>Cai, Ye</creator><creator>Sandhage, Kenneth H</creator><creator>Deheyn, Dimitri D</creator><creator>Meredith, J. Carson</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151110</creationdate><title>Bioenabled Core/Shell Microparticles with Tailored Multimodal Adhesion and Optical Reflectivity</title><author>Lin, Haisheng ; Allen, Michael C ; Wu, Jie ; deGlee, Ben M ; Shin, Donglee ; Cai, Ye ; Sandhage, Kenneth H ; Deheyn, Dimitri D ; Meredith, J. Carson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-8f9b3038cacd90cddd65c19b7f5d72daf4562b38a8dc4850621a79d15f7cc1073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Haisheng</creatorcontrib><creatorcontrib>Allen, Michael C</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><creatorcontrib>deGlee, Ben M</creatorcontrib><creatorcontrib>Shin, Donglee</creatorcontrib><creatorcontrib>Cai, Ye</creatorcontrib><creatorcontrib>Sandhage, Kenneth H</creatorcontrib><creatorcontrib>Deheyn, Dimitri D</creatorcontrib><creatorcontrib>Meredith, J. Carson</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Haisheng</au><au>Allen, Michael C</au><au>Wu, Jie</au><au>deGlee, Ben M</au><au>Shin, Donglee</au><au>Cai, Ye</au><au>Sandhage, Kenneth H</au><au>Deheyn, Dimitri D</au><au>Meredith, J. Carson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioenabled Core/Shell Microparticles with Tailored Multimodal Adhesion and Optical Reflectivity</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2015-11-10</date><risdate>2015</risdate><volume>27</volume><issue>21</issue><spage>7321</spage><epage>7330</epage><pages>7321-7330</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Nature provides remarkable examples of mass-produced microscale particles with structures and chemistries optimized by evolution for particular functions. Synthetic chemical tailoring of such sustainable biogenic particles may be used to generate new multifunctional materials. Herein, we report a facile method for the development of bioenabled core/shell microparticles consisting of surface-modified ragweed pollen with a magnetic core, for which both multimodal adhesion and optical reflectivity can be tailored. Adhesion of the magnetic-core pollen can be tuned, relative to native pollen, through the combination of tailorable short-range interactions (over ∼5 nm, via van der Waals forces and hydrogen bonding), an intermediate-range (over several μm) capillary force, and long-range (over ∼1 mm) magnetic attraction. The magnetic force could be controlled by the amount of iron oxide loaded within the core of the pollen particle, while the short-range interactions and capillary force can be tuned by coating with polystyrene nanoparticles and/or a layer of viscous pollenkitt on the exine shell surface. Such coatings were also used to tailor the optical reflectance of the magnetic pollen particles; that is, the light-reflectance intensity was enhanced by coating with pollenkitt and significantly reduced by coating with polystyrene nanoparticles. This approach for generating multifunctional core/shell microparticles with tailorable adhesion and optical reflectivity may be extended to other pollen or biological particles or to synthetic biomimetic particles. Such independent control of the core and shell chemistries enabled by this approach also allows for the generation of microparticles with a variety of combination in functions tailorable to other properties.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.5b02782</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2015-11, Vol.27 (21), p.7321-7330
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_acs_chemmater_5b02782
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Bioenabled Core/Shell Microparticles with Tailored Multimodal Adhesion and Optical Reflectivity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A11%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioenabled%20Core/Shell%20Microparticles%20with%20Tailored%20Multimodal%20Adhesion%20and%20Optical%20Reflectivity&rft.jtitle=Chemistry%20of%20materials&rft.au=Lin,%20Haisheng&rft.date=2015-11-10&rft.volume=27&rft.issue=21&rft.spage=7321&rft.epage=7330&rft.pages=7321-7330&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.5b02782&rft_dat=%3Cacs_cross%3Ec783877041%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a295t-8f9b3038cacd90cddd65c19b7f5d72daf4562b38a8dc4850621a79d15f7cc1073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true