Loading…
Cobalt-Modified Covalent Organic Framework as a Robust Water Oxidation Electrocatalyst
The development of stable, efficient oxygen evolution reaction (OER) catalyst capable of oxidizing water is one of the premier challenges in the conversion of solar energy to electrical energy, because of its poor kinetics. Herein, a bipyridine-containing covalent organic framework (TpBpy) is utiliz...
Saved in:
Published in: | Chemistry of materials 2016-06, Vol.28 (12), p.4375-4379 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The development of stable, efficient oxygen evolution reaction (OER) catalyst capable of oxidizing water is one of the premier challenges in the conversion of solar energy to electrical energy, because of its poor kinetics. Herein, a bipyridine-containing covalent organic framework (TpBpy) is utilized as an OER catalyst by way of engineering active Co(II) ions into its porous framework. The as-obtained Co-TpBpy retains a highly accessible surface area (450 m2/g) with exceptional stability, even after 1000 cycles and 24 h of OER activity in phosphate buffer under neutral pH conditions with an overpotential of 400 mV at a current density of 1 mA/cm2. The unusual catalytic stability of Co-TpBpy arises from the synergetic effect of the inherent porosity and presence of coordinating units in the COF skeleton. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/acs.chemmater.6b01370 |