Loading…
Hybrid Organic–Inorganic Photon-Powered Actuators Based on Aligned Diarylethene Nanocrystals
When photochromic molecules are organized in a crystal, the small-scale forces generated by molecular photoisomerization events can combine together to generate work on micro- or macroscopic length scales. In this work, photomechanical nanocrystals themselves are organized on macroscopic length scal...
Saved in:
Published in: | Chemistry of materials 2019-02, Vol.31 (3), p.1016-1022 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | When photochromic molecules are organized in a crystal, the small-scale forces generated by molecular photoisomerization events can combine together to generate work on micro- or macroscopic length scales. In this work, photomechanical nanocrystals themselves are organized on macroscopic length scales using a porous inorganic template. The organic diarylethene component provides the reversible photoresponse, whereas the porous alumina component provides structural support and directionality. This hybrid organic–inorganic photomechanical material acts as a bending actuator. Using ultraviolet and visible photons as power inputs, as little as 0.1 mg of reacted material generates enough force to tilt a 1.28 g mirror and steer a laser beam. The motion can be cycled multiple times in air and under water. Actuator figures-of-merit such as energy-to-work conversion efficiency and stiffness are probably limited by the high elastic modulus of the inorganic template, providing an obvious pathway for optimization. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/acs.chemmater.8b04568 |