Loading…

Trapping Methylglyoxal by Genistein and Its Metabolites in Mice

Increasing evidence supports dicarbonyl stress such as methylglyoxal (MGO) as one of the major pathogenic links between hyperglycemia and diabetic complications. In vitro studies have shown that dietary flavonoids can inhibit the formation of advanced glycation end products (AGEs) by trapping MGO. H...

Full description

Saved in:
Bibliographic Details
Published in:Chemical research in toxicology 2016-03, Vol.29 (3), p.406-414
Main Authors: Wang, Pei, Chen, Huadong, Sang, Shengmin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Increasing evidence supports dicarbonyl stress such as methylglyoxal (MGO) as one of the major pathogenic links between hyperglycemia and diabetic complications. In vitro studies have shown that dietary flavonoids can inhibit the formation of advanced glycation end products (AGEs) by trapping MGO. However, whether flavonoids can trap MGO in vivo and whether biotransformation limits the trapping capacity of flavonoids remain virtually unknown. In this study, we investigated whether genistein (GEN), the major soy isoflavone, could trap MGO in mice by promoting the formation of MGO adducts of GEN and its metabolites. Two different mouse studies were conducted. In the acute study, a single dose of MGO and GEN were administered to mice via oral gavage. In the chronic study, MGO was given to mice in drinking water for 1 month and then GEN was given to mice for 4 consecutive days via oral gavage. Two mono-MGO adducts of GEN and six mono-MGO adducts of GEN phase I and microbial metabolites were identified in mouse urine samples from these studies using liquid chromatography/electrospray ionization tandem mass spectrometry. The structures of these MGO adducts were confirmed by analyzing their MS n (n = 1–4) spectra as well as by comparing them with the tandem mass spectra of authentic standards. All of the MGO adducts presented in their phase II conjugated forms in mouse urine samples in the acute and chronic studies. To our knowledge, this is the first in vivo evidence to demonstrate the trapping efficacy of GEN in mice and to show that the metabolites of GEN remain bioactive.
ISSN:0893-228X
1520-5010
DOI:10.1021/acs.chemrestox.5b00516