Loading…

Modeling K‑Containing Vapors Transforming into Sub-micrometer Particles in Flue Gas of Pulverized Straw Combustion

A mechanistic model for K-containing vapors transforming into sub-micrometer particles in the flue gas post-pulverized straw combustion was developed based on a plug-flow reactor model. The model considers the mechanisms including KCl sulfation, homogeneous nucleation of the vapors, heterogeneous co...

Full description

Saved in:
Bibliographic Details
Published in:Energy & fuels 2020-01, Vol.34 (1), p.440-449
Main Authors: Xu, Mingzi, Yue, Aolei, Sheng, Changdong
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a301t-a49a2706404471a35cfeaf2b978a88c99b9b24d81af06f3bfb64dcb6e89dbc5b3
cites cdi_FETCH-LOGICAL-a301t-a49a2706404471a35cfeaf2b978a88c99b9b24d81af06f3bfb64dcb6e89dbc5b3
container_end_page 449
container_issue 1
container_start_page 440
container_title Energy & fuels
container_volume 34
creator Xu, Mingzi
Yue, Aolei
Sheng, Changdong
description A mechanistic model for K-containing vapors transforming into sub-micrometer particles in the flue gas post-pulverized straw combustion was developed based on a plug-flow reactor model. The model considers the mechanisms including KCl sulfation, homogeneous nucleation of the vapors, heterogeneous condensation of the vapors on existing particles, and collision–coagulation between aerosol particles to describe the transformation processes, with a detailed view of the effects of the associated interactions. The behaviors of pure KCl transforming into sub-micrometer particles, the impact of KCl sulfation on KCl transformation, and the influence of fly ash particles on the transformation of K-containing vapors to sub-micrometer particles were investigated numerically by model simulation. The results show that homogeneous nucleation of KCl starts at 953–983 K, and the initial concentration of KCl vapor is the dominant factor determining the nucleation temperature and size. However, gaseous K2SO4 generated by KCl sulfation begins to nucleate homogeneously at 993–1093 K, and the resulting K2SO4 particles prevent KCl vapor from nucleation but allows it to condense on existing particles. The residual fly ash has a significant effect on the vapor transforming to sub-micrometer particles. It not only reduces the mass concentration and size of the vapor-formed sub-micrometer particles but also the number concentration of the sub-micrometer ash.
doi_str_mv 10.1021/acs.energyfuels.9b02974
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_energyfuels_9b02974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>e63823207</sourcerecordid><originalsourceid>FETCH-LOGICAL-a301t-a49a2706404471a35cfeaf2b978a88c99b9b24d81af06f3bfb64dcb6e89dbc5b3</originalsourceid><addsrcrecordid>eNqFkEFOwzAQRS0EEqVwBnyBFDtxEnuJIloQRVRqYRuNE7tylcSV7YBgxRW4IichUbtgx2r0588ffT2ErimZURLTG6j8THXKbT90rxo_E5LEImcnaELTmETpoE7RhHCeRySL2Tm68H5HCMkSnk5QeLK1aky3xY8_X9-F7QKYbpSvsLfO442Dzmvr2nFnumDxupdRaypnWxWUwytwwVSN8oOL502v8AI8thqv-uZNOfOparwODt5xYVvZ-2Bsd4nONDReXR3nFL3M7zbFfbR8XjwUt8sIEkJDBExAnJOMEcZyCklaaQU6liLnwHklhBQyZjWnoEmmE6llxupKZoqLWlapTKYoP_wd2nrvlC73zrTgPkpKyhFeOcAr_8Arj_CGZHJIjgc727tu6Plv6heJ333z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling K‑Containing Vapors Transforming into Sub-micrometer Particles in Flue Gas of Pulverized Straw Combustion</title><source>Access via American Chemical Society</source><creator>Xu, Mingzi ; Yue, Aolei ; Sheng, Changdong</creator><creatorcontrib>Xu, Mingzi ; Yue, Aolei ; Sheng, Changdong</creatorcontrib><description>A mechanistic model for K-containing vapors transforming into sub-micrometer particles in the flue gas post-pulverized straw combustion was developed based on a plug-flow reactor model. The model considers the mechanisms including KCl sulfation, homogeneous nucleation of the vapors, heterogeneous condensation of the vapors on existing particles, and collision–coagulation between aerosol particles to describe the transformation processes, with a detailed view of the effects of the associated interactions. The behaviors of pure KCl transforming into sub-micrometer particles, the impact of KCl sulfation on KCl transformation, and the influence of fly ash particles on the transformation of K-containing vapors to sub-micrometer particles were investigated numerically by model simulation. The results show that homogeneous nucleation of KCl starts at 953–983 K, and the initial concentration of KCl vapor is the dominant factor determining the nucleation temperature and size. However, gaseous K2SO4 generated by KCl sulfation begins to nucleate homogeneously at 993–1093 K, and the resulting K2SO4 particles prevent KCl vapor from nucleation but allows it to condense on existing particles. The residual fly ash has a significant effect on the vapor transforming to sub-micrometer particles. It not only reduces the mass concentration and size of the vapor-formed sub-micrometer particles but also the number concentration of the sub-micrometer ash.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.9b02974</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Energy &amp; fuels, 2020-01, Vol.34 (1), p.440-449</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a301t-a49a2706404471a35cfeaf2b978a88c99b9b24d81af06f3bfb64dcb6e89dbc5b3</citedby><cites>FETCH-LOGICAL-a301t-a49a2706404471a35cfeaf2b978a88c99b9b24d81af06f3bfb64dcb6e89dbc5b3</cites><orcidid>0000-0003-3082-3019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Mingzi</creatorcontrib><creatorcontrib>Yue, Aolei</creatorcontrib><creatorcontrib>Sheng, Changdong</creatorcontrib><title>Modeling K‑Containing Vapors Transforming into Sub-micrometer Particles in Flue Gas of Pulverized Straw Combustion</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>A mechanistic model for K-containing vapors transforming into sub-micrometer particles in the flue gas post-pulverized straw combustion was developed based on a plug-flow reactor model. The model considers the mechanisms including KCl sulfation, homogeneous nucleation of the vapors, heterogeneous condensation of the vapors on existing particles, and collision–coagulation between aerosol particles to describe the transformation processes, with a detailed view of the effects of the associated interactions. The behaviors of pure KCl transforming into sub-micrometer particles, the impact of KCl sulfation on KCl transformation, and the influence of fly ash particles on the transformation of K-containing vapors to sub-micrometer particles were investigated numerically by model simulation. The results show that homogeneous nucleation of KCl starts at 953–983 K, and the initial concentration of KCl vapor is the dominant factor determining the nucleation temperature and size. However, gaseous K2SO4 generated by KCl sulfation begins to nucleate homogeneously at 993–1093 K, and the resulting K2SO4 particles prevent KCl vapor from nucleation but allows it to condense on existing particles. The residual fly ash has a significant effect on the vapor transforming to sub-micrometer particles. It not only reduces the mass concentration and size of the vapor-formed sub-micrometer particles but also the number concentration of the sub-micrometer ash.</description><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEFOwzAQRS0EEqVwBnyBFDtxEnuJIloQRVRqYRuNE7tylcSV7YBgxRW4IichUbtgx2r0588ffT2ErimZURLTG6j8THXKbT90rxo_E5LEImcnaELTmETpoE7RhHCeRySL2Tm68H5HCMkSnk5QeLK1aky3xY8_X9-F7QKYbpSvsLfO442Dzmvr2nFnumDxupdRaypnWxWUwytwwVSN8oOL502v8AI8thqv-uZNOfOparwODt5xYVvZ-2Bsd4nONDReXR3nFL3M7zbFfbR8XjwUt8sIEkJDBExAnJOMEcZyCklaaQU6liLnwHklhBQyZjWnoEmmE6llxupKZoqLWlapTKYoP_wd2nrvlC73zrTgPkpKyhFeOcAr_8Arj_CGZHJIjgc727tu6Plv6heJ333z</recordid><startdate>20200116</startdate><enddate>20200116</enddate><creator>Xu, Mingzi</creator><creator>Yue, Aolei</creator><creator>Sheng, Changdong</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3082-3019</orcidid></search><sort><creationdate>20200116</creationdate><title>Modeling K‑Containing Vapors Transforming into Sub-micrometer Particles in Flue Gas of Pulverized Straw Combustion</title><author>Xu, Mingzi ; Yue, Aolei ; Sheng, Changdong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a301t-a49a2706404471a35cfeaf2b978a88c99b9b24d81af06f3bfb64dcb6e89dbc5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Mingzi</creatorcontrib><creatorcontrib>Yue, Aolei</creatorcontrib><creatorcontrib>Sheng, Changdong</creatorcontrib><collection>CrossRef</collection><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Mingzi</au><au>Yue, Aolei</au><au>Sheng, Changdong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling K‑Containing Vapors Transforming into Sub-micrometer Particles in Flue Gas of Pulverized Straw Combustion</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2020-01-16</date><risdate>2020</risdate><volume>34</volume><issue>1</issue><spage>440</spage><epage>449</epage><pages>440-449</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>A mechanistic model for K-containing vapors transforming into sub-micrometer particles in the flue gas post-pulverized straw combustion was developed based on a plug-flow reactor model. The model considers the mechanisms including KCl sulfation, homogeneous nucleation of the vapors, heterogeneous condensation of the vapors on existing particles, and collision–coagulation between aerosol particles to describe the transformation processes, with a detailed view of the effects of the associated interactions. The behaviors of pure KCl transforming into sub-micrometer particles, the impact of KCl sulfation on KCl transformation, and the influence of fly ash particles on the transformation of K-containing vapors to sub-micrometer particles were investigated numerically by model simulation. The results show that homogeneous nucleation of KCl starts at 953–983 K, and the initial concentration of KCl vapor is the dominant factor determining the nucleation temperature and size. However, gaseous K2SO4 generated by KCl sulfation begins to nucleate homogeneously at 993–1093 K, and the resulting K2SO4 particles prevent KCl vapor from nucleation but allows it to condense on existing particles. The residual fly ash has a significant effect on the vapor transforming to sub-micrometer particles. It not only reduces the mass concentration and size of the vapor-formed sub-micrometer particles but also the number concentration of the sub-micrometer ash.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.energyfuels.9b02974</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3082-3019</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2020-01, Vol.34 (1), p.440-449
issn 0887-0624
1520-5029
language eng
recordid cdi_crossref_primary_10_1021_acs_energyfuels_9b02974
source Access via American Chemical Society
title Modeling K‑Containing Vapors Transforming into Sub-micrometer Particles in Flue Gas of Pulverized Straw Combustion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A45%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20K%E2%80%91Containing%20Vapors%20Transforming%20into%20Sub-micrometer%20Particles%20in%20Flue%20Gas%20of%20Pulverized%20Straw%20Combustion&rft.jtitle=Energy%20&%20fuels&rft.au=Xu,%20Mingzi&rft.date=2020-01-16&rft.volume=34&rft.issue=1&rft.spage=440&rft.epage=449&rft.pages=440-449&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.9b02974&rft_dat=%3Cacs_cross%3Ee63823207%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a301t-a49a2706404471a35cfeaf2b978a88c99b9b24d81af06f3bfb64dcb6e89dbc5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true