Loading…
Molecular Understanding of the Solid Interface-Induced Microstructures of 1‑Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide in Gas Absorption
The abnormal intensification of gas absorption in nanoconfined ionic liquid (IL) systems has been receiving ever-increasing attention. In this work, grand canonical Monte Carlo and molecular dynamics simulations were performed for the systematic investigation of CO2 and H2S absorption by 1-hexyl-3-m...
Saved in:
Published in: | Industrial & engineering chemistry research 2022-03, Vol.61 (10), p.3754-3765 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a280t-c6d93f4261530d74fb0b3c0a1abb72d53ab5c8f4bb2bd96e3607422cc54e8b883 |
---|---|
cites | cdi_FETCH-LOGICAL-a280t-c6d93f4261530d74fb0b3c0a1abb72d53ab5c8f4bb2bd96e3607422cc54e8b883 |
container_end_page | 3765 |
container_issue | 10 |
container_start_page | 3754 |
container_title | Industrial & engineering chemistry research |
container_volume | 61 |
creator | Jin, Guangzheng Song, Xinyao Gao, Qingwei Zhang, Yumeng Chen, Yifeng Lu, Xiaohua Zhu, Yudan |
description | The abnormal intensification of gas absorption in nanoconfined ionic liquid (IL) systems has been receiving ever-increasing attention. In this work, grand canonical Monte Carlo and molecular dynamics simulations were performed for the systematic investigation of CO2 and H2S absorption by 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide nanoconfined within different slits [graphene and rutile(110)]. The absorption mechanisms within different slits were greatly dependent on the solid interface-induced microstructures (spatial distribution and molecular orientation) of ILs. Within graphene slits, imidazole rings were mainly oriented parallel to the solid substrate, and IL stacking tightened such that gas absorption was dominated by the effect of the anions of ILs. By contrast, within rutile slits, the imidazole rings of ILs were mainly tilted on the solid surface because of the interfacial interaction. This orientation accounted for the large free volume that dominated the intensification of the absorption of both gases. |
doi_str_mv | 10.1021/acs.iecr.1c05043 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_1c05043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b769324797</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-c6d93f4261530d74fb0b3c0a1abb72d53ab5c8f4bb2bd96e3607422cc54e8b883</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EEqWwM3oEiRQ7iVN3LAjaSq0YoHPkK3Xl2pXtSISJV2Dm7XgSErUr0znSf9E5HwDXGI0wyvE9E3FklAgjLBBBZXECBpjkKOt2cgoGiFKaEUrJObiIcYsQIqQsB-Bn5a0SjWUBrp1UISbmpHHv0GuYNgq-emskXLikgmZCZQsnG6EkXBkRfEyhEakJKvZ2_Pv1PVcfrc2KbKfSprVmZyT77BqaHXww8SYFo23jgz_IsbHau9be9j4FjYMzFuGURx_2yXh3Cc40s1FdHecQrJ-f3h7n2fJltnicLjOWU5QyUclJocu8wqRAclxqjnghEMOM83EuScE4EVSXnOdcTipVVGhc5rkQpFSUU1oMATr09i_FoHS9D2bHQltjVPdw6w5u3cOtj3C7yN0h0itb3wTXHfi__Q8UL4PN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular Understanding of the Solid Interface-Induced Microstructures of 1‑Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide in Gas Absorption</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Jin, Guangzheng ; Song, Xinyao ; Gao, Qingwei ; Zhang, Yumeng ; Chen, Yifeng ; Lu, Xiaohua ; Zhu, Yudan</creator><creatorcontrib>Jin, Guangzheng ; Song, Xinyao ; Gao, Qingwei ; Zhang, Yumeng ; Chen, Yifeng ; Lu, Xiaohua ; Zhu, Yudan</creatorcontrib><description>The abnormal intensification of gas absorption in nanoconfined ionic liquid (IL) systems has been receiving ever-increasing attention. In this work, grand canonical Monte Carlo and molecular dynamics simulations were performed for the systematic investigation of CO2 and H2S absorption by 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide nanoconfined within different slits [graphene and rutile(110)]. The absorption mechanisms within different slits were greatly dependent on the solid interface-induced microstructures (spatial distribution and molecular orientation) of ILs. Within graphene slits, imidazole rings were mainly oriented parallel to the solid substrate, and IL stacking tightened such that gas absorption was dominated by the effect of the anions of ILs. By contrast, within rutile slits, the imidazole rings of ILs were mainly tilted on the solid surface because of the interfacial interaction. This orientation accounted for the large free volume that dominated the intensification of the absorption of both gases.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.1c05043</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Thermodynamics, Transport, and Fluid Mechanics</subject><ispartof>Industrial & engineering chemistry research, 2022-03, Vol.61 (10), p.3754-3765</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-c6d93f4261530d74fb0b3c0a1abb72d53ab5c8f4bb2bd96e3607422cc54e8b883</citedby><cites>FETCH-LOGICAL-a280t-c6d93f4261530d74fb0b3c0a1abb72d53ab5c8f4bb2bd96e3607422cc54e8b883</cites><orcidid>0000-0003-4690-1229 ; 0000-0001-6643-2998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jin, Guangzheng</creatorcontrib><creatorcontrib>Song, Xinyao</creatorcontrib><creatorcontrib>Gao, Qingwei</creatorcontrib><creatorcontrib>Zhang, Yumeng</creatorcontrib><creatorcontrib>Chen, Yifeng</creatorcontrib><creatorcontrib>Lu, Xiaohua</creatorcontrib><creatorcontrib>Zhu, Yudan</creatorcontrib><title>Molecular Understanding of the Solid Interface-Induced Microstructures of 1‑Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide in Gas Absorption</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>The abnormal intensification of gas absorption in nanoconfined ionic liquid (IL) systems has been receiving ever-increasing attention. In this work, grand canonical Monte Carlo and molecular dynamics simulations were performed for the systematic investigation of CO2 and H2S absorption by 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide nanoconfined within different slits [graphene and rutile(110)]. The absorption mechanisms within different slits were greatly dependent on the solid interface-induced microstructures (spatial distribution and molecular orientation) of ILs. Within graphene slits, imidazole rings were mainly oriented parallel to the solid substrate, and IL stacking tightened such that gas absorption was dominated by the effect of the anions of ILs. By contrast, within rutile slits, the imidazole rings of ILs were mainly tilted on the solid surface because of the interfacial interaction. This orientation accounted for the large free volume that dominated the intensification of the absorption of both gases.</description><subject>Thermodynamics, Transport, and Fluid Mechanics</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhi0EEqWwM3oEiRQ7iVN3LAjaSq0YoHPkK3Xl2pXtSISJV2Dm7XgSErUr0znSf9E5HwDXGI0wyvE9E3FklAgjLBBBZXECBpjkKOt2cgoGiFKaEUrJObiIcYsQIqQsB-Bn5a0SjWUBrp1UISbmpHHv0GuYNgq-emskXLikgmZCZQsnG6EkXBkRfEyhEakJKvZ2_Pv1PVcfrc2KbKfSprVmZyT77BqaHXww8SYFo23jgz_IsbHau9be9j4FjYMzFuGURx_2yXh3Cc40s1FdHecQrJ-f3h7n2fJltnicLjOWU5QyUclJocu8wqRAclxqjnghEMOM83EuScE4EVSXnOdcTipVVGhc5rkQpFSUU1oMATr09i_FoHS9D2bHQltjVPdw6w5u3cOtj3C7yN0h0itb3wTXHfi__Q8UL4PN</recordid><startdate>20220316</startdate><enddate>20220316</enddate><creator>Jin, Guangzheng</creator><creator>Song, Xinyao</creator><creator>Gao, Qingwei</creator><creator>Zhang, Yumeng</creator><creator>Chen, Yifeng</creator><creator>Lu, Xiaohua</creator><creator>Zhu, Yudan</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4690-1229</orcidid><orcidid>https://orcid.org/0000-0001-6643-2998</orcidid></search><sort><creationdate>20220316</creationdate><title>Molecular Understanding of the Solid Interface-Induced Microstructures of 1‑Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide in Gas Absorption</title><author>Jin, Guangzheng ; Song, Xinyao ; Gao, Qingwei ; Zhang, Yumeng ; Chen, Yifeng ; Lu, Xiaohua ; Zhu, Yudan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-c6d93f4261530d74fb0b3c0a1abb72d53ab5c8f4bb2bd96e3607422cc54e8b883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Thermodynamics, Transport, and Fluid Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Guangzheng</creatorcontrib><creatorcontrib>Song, Xinyao</creatorcontrib><creatorcontrib>Gao, Qingwei</creatorcontrib><creatorcontrib>Zhang, Yumeng</creatorcontrib><creatorcontrib>Chen, Yifeng</creatorcontrib><creatorcontrib>Lu, Xiaohua</creatorcontrib><creatorcontrib>Zhu, Yudan</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Guangzheng</au><au>Song, Xinyao</au><au>Gao, Qingwei</au><au>Zhang, Yumeng</au><au>Chen, Yifeng</au><au>Lu, Xiaohua</au><au>Zhu, Yudan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Understanding of the Solid Interface-Induced Microstructures of 1‑Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide in Gas Absorption</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2022-03-16</date><risdate>2022</risdate><volume>61</volume><issue>10</issue><spage>3754</spage><epage>3765</epage><pages>3754-3765</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>The abnormal intensification of gas absorption in nanoconfined ionic liquid (IL) systems has been receiving ever-increasing attention. In this work, grand canonical Monte Carlo and molecular dynamics simulations were performed for the systematic investigation of CO2 and H2S absorption by 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide nanoconfined within different slits [graphene and rutile(110)]. The absorption mechanisms within different slits were greatly dependent on the solid interface-induced microstructures (spatial distribution and molecular orientation) of ILs. Within graphene slits, imidazole rings were mainly oriented parallel to the solid substrate, and IL stacking tightened such that gas absorption was dominated by the effect of the anions of ILs. By contrast, within rutile slits, the imidazole rings of ILs were mainly tilted on the solid surface because of the interfacial interaction. This orientation accounted for the large free volume that dominated the intensification of the absorption of both gases.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.1c05043</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4690-1229</orcidid><orcidid>https://orcid.org/0000-0001-6643-2998</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2022-03, Vol.61 (10), p.3754-3765 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_iecr_1c05043 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Thermodynamics, Transport, and Fluid Mechanics |
title | Molecular Understanding of the Solid Interface-Induced Microstructures of 1‑Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide in Gas Absorption |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A00%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Understanding%20of%20the%20Solid%20Interface-Induced%20Microstructures%20of%201%E2%80%91Hexyl-3-methylimidazolium%20Bis(trifluoromethylsulfonyl)imide%20in%20Gas%20Absorption&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Jin,%20Guangzheng&rft.date=2022-03-16&rft.volume=61&rft.issue=10&rft.spage=3754&rft.epage=3765&rft.pages=3754-3765&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.1c05043&rft_dat=%3Cacs_cross%3Eb769324797%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a280t-c6d93f4261530d74fb0b3c0a1abb72d53ab5c8f4bb2bd96e3607422cc54e8b883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |