Loading…

Molecular Understanding of the Solid Interface-Induced Microstructures of 1‑Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide in Gas Absorption

The abnormal intensification of gas absorption in nanoconfined ionic liquid (IL) systems has been receiving ever-increasing attention. In this work, grand canonical Monte Carlo and molecular dynamics simulations were performed for the systematic investigation of CO2 and H2S absorption by 1-hexyl-3-m...

Full description

Saved in:
Bibliographic Details
Published in:Industrial & engineering chemistry research 2022-03, Vol.61 (10), p.3754-3765
Main Authors: Jin, Guangzheng, Song, Xinyao, Gao, Qingwei, Zhang, Yumeng, Chen, Yifeng, Lu, Xiaohua, Zhu, Yudan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a280t-c6d93f4261530d74fb0b3c0a1abb72d53ab5c8f4bb2bd96e3607422cc54e8b883
cites cdi_FETCH-LOGICAL-a280t-c6d93f4261530d74fb0b3c0a1abb72d53ab5c8f4bb2bd96e3607422cc54e8b883
container_end_page 3765
container_issue 10
container_start_page 3754
container_title Industrial & engineering chemistry research
container_volume 61
creator Jin, Guangzheng
Song, Xinyao
Gao, Qingwei
Zhang, Yumeng
Chen, Yifeng
Lu, Xiaohua
Zhu, Yudan
description The abnormal intensification of gas absorption in nanoconfined ionic liquid (IL) systems has been receiving ever-increasing attention. In this work, grand canonical Monte Carlo and molecular dynamics simulations were performed for the systematic investigation of CO2 and H2S absorption by 1-hexyl-3-methylimidazolium bis­(trifluoromethylsulfonyl)­imide nanoconfined within different slits [graphene and rutile(110)]. The absorption mechanisms within different slits were greatly dependent on the solid interface-induced microstructures (spatial distribution and molecular orientation) of ILs. Within graphene slits, imidazole rings were mainly oriented parallel to the solid substrate, and IL stacking tightened such that gas absorption was dominated by the effect of the anions of ILs. By contrast, within rutile slits, the imidazole rings of ILs were mainly tilted on the solid surface because of the interfacial interaction. This orientation accounted for the large free volume that dominated the intensification of the absorption of both gases.
doi_str_mv 10.1021/acs.iecr.1c05043
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_1c05043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b769324797</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-c6d93f4261530d74fb0b3c0a1abb72d53ab5c8f4bb2bd96e3607422cc54e8b883</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EEqWwM3oEiRQ7iVN3LAjaSq0YoHPkK3Xl2pXtSISJV2Dm7XgSErUr0znSf9E5HwDXGI0wyvE9E3FklAgjLBBBZXECBpjkKOt2cgoGiFKaEUrJObiIcYsQIqQsB-Bn5a0SjWUBrp1UISbmpHHv0GuYNgq-emskXLikgmZCZQsnG6EkXBkRfEyhEakJKvZ2_Pv1PVcfrc2KbKfSprVmZyT77BqaHXww8SYFo23jgz_IsbHau9be9j4FjYMzFuGURx_2yXh3Cc40s1FdHecQrJ-f3h7n2fJltnicLjOWU5QyUclJocu8wqRAclxqjnghEMOM83EuScE4EVSXnOdcTipVVGhc5rkQpFSUU1oMATr09i_FoHS9D2bHQltjVPdw6w5u3cOtj3C7yN0h0itb3wTXHfi__Q8UL4PN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular Understanding of the Solid Interface-Induced Microstructures of 1‑Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide in Gas Absorption</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Jin, Guangzheng ; Song, Xinyao ; Gao, Qingwei ; Zhang, Yumeng ; Chen, Yifeng ; Lu, Xiaohua ; Zhu, Yudan</creator><creatorcontrib>Jin, Guangzheng ; Song, Xinyao ; Gao, Qingwei ; Zhang, Yumeng ; Chen, Yifeng ; Lu, Xiaohua ; Zhu, Yudan</creatorcontrib><description>The abnormal intensification of gas absorption in nanoconfined ionic liquid (IL) systems has been receiving ever-increasing attention. In this work, grand canonical Monte Carlo and molecular dynamics simulations were performed for the systematic investigation of CO2 and H2S absorption by 1-hexyl-3-methylimidazolium bis­(trifluoromethylsulfonyl)­imide nanoconfined within different slits [graphene and rutile(110)]. The absorption mechanisms within different slits were greatly dependent on the solid interface-induced microstructures (spatial distribution and molecular orientation) of ILs. Within graphene slits, imidazole rings were mainly oriented parallel to the solid substrate, and IL stacking tightened such that gas absorption was dominated by the effect of the anions of ILs. By contrast, within rutile slits, the imidazole rings of ILs were mainly tilted on the solid surface because of the interfacial interaction. This orientation accounted for the large free volume that dominated the intensification of the absorption of both gases.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.1c05043</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Thermodynamics, Transport, and Fluid Mechanics</subject><ispartof>Industrial &amp; engineering chemistry research, 2022-03, Vol.61 (10), p.3754-3765</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-c6d93f4261530d74fb0b3c0a1abb72d53ab5c8f4bb2bd96e3607422cc54e8b883</citedby><cites>FETCH-LOGICAL-a280t-c6d93f4261530d74fb0b3c0a1abb72d53ab5c8f4bb2bd96e3607422cc54e8b883</cites><orcidid>0000-0003-4690-1229 ; 0000-0001-6643-2998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jin, Guangzheng</creatorcontrib><creatorcontrib>Song, Xinyao</creatorcontrib><creatorcontrib>Gao, Qingwei</creatorcontrib><creatorcontrib>Zhang, Yumeng</creatorcontrib><creatorcontrib>Chen, Yifeng</creatorcontrib><creatorcontrib>Lu, Xiaohua</creatorcontrib><creatorcontrib>Zhu, Yudan</creatorcontrib><title>Molecular Understanding of the Solid Interface-Induced Microstructures of 1‑Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide in Gas Absorption</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>The abnormal intensification of gas absorption in nanoconfined ionic liquid (IL) systems has been receiving ever-increasing attention. In this work, grand canonical Monte Carlo and molecular dynamics simulations were performed for the systematic investigation of CO2 and H2S absorption by 1-hexyl-3-methylimidazolium bis­(trifluoromethylsulfonyl)­imide nanoconfined within different slits [graphene and rutile(110)]. The absorption mechanisms within different slits were greatly dependent on the solid interface-induced microstructures (spatial distribution and molecular orientation) of ILs. Within graphene slits, imidazole rings were mainly oriented parallel to the solid substrate, and IL stacking tightened such that gas absorption was dominated by the effect of the anions of ILs. By contrast, within rutile slits, the imidazole rings of ILs were mainly tilted on the solid surface because of the interfacial interaction. This orientation accounted for the large free volume that dominated the intensification of the absorption of both gases.</description><subject>Thermodynamics, Transport, and Fluid Mechanics</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhi0EEqWwM3oEiRQ7iVN3LAjaSq0YoHPkK3Xl2pXtSISJV2Dm7XgSErUr0znSf9E5HwDXGI0wyvE9E3FklAgjLBBBZXECBpjkKOt2cgoGiFKaEUrJObiIcYsQIqQsB-Bn5a0SjWUBrp1UISbmpHHv0GuYNgq-emskXLikgmZCZQsnG6EkXBkRfEyhEakJKvZ2_Pv1PVcfrc2KbKfSprVmZyT77BqaHXww8SYFo23jgz_IsbHau9be9j4FjYMzFuGURx_2yXh3Cc40s1FdHecQrJ-f3h7n2fJltnicLjOWU5QyUclJocu8wqRAclxqjnghEMOM83EuScE4EVSXnOdcTipVVGhc5rkQpFSUU1oMATr09i_FoHS9D2bHQltjVPdw6w5u3cOtj3C7yN0h0itb3wTXHfi__Q8UL4PN</recordid><startdate>20220316</startdate><enddate>20220316</enddate><creator>Jin, Guangzheng</creator><creator>Song, Xinyao</creator><creator>Gao, Qingwei</creator><creator>Zhang, Yumeng</creator><creator>Chen, Yifeng</creator><creator>Lu, Xiaohua</creator><creator>Zhu, Yudan</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4690-1229</orcidid><orcidid>https://orcid.org/0000-0001-6643-2998</orcidid></search><sort><creationdate>20220316</creationdate><title>Molecular Understanding of the Solid Interface-Induced Microstructures of 1‑Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide in Gas Absorption</title><author>Jin, Guangzheng ; Song, Xinyao ; Gao, Qingwei ; Zhang, Yumeng ; Chen, Yifeng ; Lu, Xiaohua ; Zhu, Yudan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-c6d93f4261530d74fb0b3c0a1abb72d53ab5c8f4bb2bd96e3607422cc54e8b883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Thermodynamics, Transport, and Fluid Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Guangzheng</creatorcontrib><creatorcontrib>Song, Xinyao</creatorcontrib><creatorcontrib>Gao, Qingwei</creatorcontrib><creatorcontrib>Zhang, Yumeng</creatorcontrib><creatorcontrib>Chen, Yifeng</creatorcontrib><creatorcontrib>Lu, Xiaohua</creatorcontrib><creatorcontrib>Zhu, Yudan</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Guangzheng</au><au>Song, Xinyao</au><au>Gao, Qingwei</au><au>Zhang, Yumeng</au><au>Chen, Yifeng</au><au>Lu, Xiaohua</au><au>Zhu, Yudan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Understanding of the Solid Interface-Induced Microstructures of 1‑Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide in Gas Absorption</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2022-03-16</date><risdate>2022</risdate><volume>61</volume><issue>10</issue><spage>3754</spage><epage>3765</epage><pages>3754-3765</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>The abnormal intensification of gas absorption in nanoconfined ionic liquid (IL) systems has been receiving ever-increasing attention. In this work, grand canonical Monte Carlo and molecular dynamics simulations were performed for the systematic investigation of CO2 and H2S absorption by 1-hexyl-3-methylimidazolium bis­(trifluoromethylsulfonyl)­imide nanoconfined within different slits [graphene and rutile(110)]. The absorption mechanisms within different slits were greatly dependent on the solid interface-induced microstructures (spatial distribution and molecular orientation) of ILs. Within graphene slits, imidazole rings were mainly oriented parallel to the solid substrate, and IL stacking tightened such that gas absorption was dominated by the effect of the anions of ILs. By contrast, within rutile slits, the imidazole rings of ILs were mainly tilted on the solid surface because of the interfacial interaction. This orientation accounted for the large free volume that dominated the intensification of the absorption of both gases.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.1c05043</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4690-1229</orcidid><orcidid>https://orcid.org/0000-0001-6643-2998</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2022-03, Vol.61 (10), p.3754-3765
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_acs_iecr_1c05043
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Thermodynamics, Transport, and Fluid Mechanics
title Molecular Understanding of the Solid Interface-Induced Microstructures of 1‑Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide in Gas Absorption
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A00%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Understanding%20of%20the%20Solid%20Interface-Induced%20Microstructures%20of%201%E2%80%91Hexyl-3-methylimidazolium%20Bis(trifluoromethylsulfonyl)imide%20in%20Gas%20Absorption&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Jin,%20Guangzheng&rft.date=2022-03-16&rft.volume=61&rft.issue=10&rft.spage=3754&rft.epage=3765&rft.pages=3754-3765&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.1c05043&rft_dat=%3Cacs_cross%3Eb769324797%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a280t-c6d93f4261530d74fb0b3c0a1abb72d53ab5c8f4bb2bd96e3607422cc54e8b883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true