Loading…

A Julia Framework for Graph-Structured Nonlinear Optimization

Graph theory provides a convenient framework for modeling and solving structured optimization problems. Under this framework, the modeler can arrange/assemble the components of an optimization model (variables, constraints, objective functions, and data) within nodes and edges of a graph, and this r...

Full description

Saved in:
Bibliographic Details
Published in:Industrial & engineering chemistry research 2022-07, Vol.61 (26), p.9366-9380
Main Authors: Cole, David L., Shin, Sungho, Zavala, Victor M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a322t-585ef2a922f50075d0745b0d6872b60aec0eeb68ba1d76be2a0f4d53e0aa7dd83
cites cdi_FETCH-LOGICAL-a322t-585ef2a922f50075d0745b0d6872b60aec0eeb68ba1d76be2a0f4d53e0aa7dd83
container_end_page 9380
container_issue 26
container_start_page 9366
container_title Industrial & engineering chemistry research
container_volume 61
creator Cole, David L.
Shin, Sungho
Zavala, Victor M.
description Graph theory provides a convenient framework for modeling and solving structured optimization problems. Under this framework, the modeler can arrange/assemble the components of an optimization model (variables, constraints, objective functions, and data) within nodes and edges of a graph, and this representation can be used to visualize, manipulate, and solve the problem. In this work, we present a Julia framework for modeling and solving graph-structured nonlinear optimization problems. Our framework integrates the modeling package Plasmo.jl (which facilitates the construction and manipulation of graph models) and the nonlinear optimization solver MadNLP.jl (which provides capabilities for exploiting graph structures to accelerate solution). We illustrate with a simple example how model construction and manipulation can be performed in an intuitive manner using Plasmo.jl and how the model structure can be exploited by MadNLP.jl. We also demonstrate the scalability of the framework by targeting a large-scale, stochastic gas network problem that contains over 1.7 million variables.
doi_str_mv 10.1021/acs.iecr.2c01253
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_2c01253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>e14519102</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-585ef2a922f50075d0745b0d6872b60aec0eeb68ba1d76be2a0f4d53e0aa7dd83</originalsourceid><addsrcrecordid>eNp1j01Pg0AQhjdGE7F698gPEJxdGFgPHprGVk1jD-qZDOwSt_KVAWL01xfSXj29h_dj5hHiVkIoQcl7KvrQ2YJDVYBUGJ0JT6KCACHGc-GB1jpArfFSXPX9HgAQ49gTj0v_dawc-Wum2v60_O2XLfsbpu4reB94LIaRrfHf2qZyjSX2d93gavdHg2uba3FRUtXbm5MuxOf66WP1HGx3m5fVchtQpNQw3UVbKnpQqkSAFA2kMeZgEp2qPAGyBVibJzonadIkt4qgjA1GFohSY3S0EHDcLbjte7Zl1rGriX8zCdmMn0342YyfnfCnyt2xMjv7duRmevD_-AFeM17g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Julia Framework for Graph-Structured Nonlinear Optimization</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Cole, David L. ; Shin, Sungho ; Zavala, Victor M.</creator><creatorcontrib>Cole, David L. ; Shin, Sungho ; Zavala, Victor M.</creatorcontrib><description>Graph theory provides a convenient framework for modeling and solving structured optimization problems. Under this framework, the modeler can arrange/assemble the components of an optimization model (variables, constraints, objective functions, and data) within nodes and edges of a graph, and this representation can be used to visualize, manipulate, and solve the problem. In this work, we present a Julia framework for modeling and solving graph-structured nonlinear optimization problems. Our framework integrates the modeling package Plasmo.jl (which facilitates the construction and manipulation of graph models) and the nonlinear optimization solver MadNLP.jl (which provides capabilities for exploiting graph structures to accelerate solution). We illustrate with a simple example how model construction and manipulation can be performed in an intuitive manner using Plasmo.jl and how the model structure can be exploited by MadNLP.jl. We also demonstrate the scalability of the framework by targeting a large-scale, stochastic gas network problem that contains over 1.7 million variables.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.2c01253</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Process Systems Engineering</subject><ispartof>Industrial &amp; engineering chemistry research, 2022-07, Vol.61 (26), p.9366-9380</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-585ef2a922f50075d0745b0d6872b60aec0eeb68ba1d76be2a0f4d53e0aa7dd83</citedby><cites>FETCH-LOGICAL-a322t-585ef2a922f50075d0745b0d6872b60aec0eeb68ba1d76be2a0f4d53e0aa7dd83</cites><orcidid>0000-0002-5744-7378</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cole, David L.</creatorcontrib><creatorcontrib>Shin, Sungho</creatorcontrib><creatorcontrib>Zavala, Victor M.</creatorcontrib><title>A Julia Framework for Graph-Structured Nonlinear Optimization</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Graph theory provides a convenient framework for modeling and solving structured optimization problems. Under this framework, the modeler can arrange/assemble the components of an optimization model (variables, constraints, objective functions, and data) within nodes and edges of a graph, and this representation can be used to visualize, manipulate, and solve the problem. In this work, we present a Julia framework for modeling and solving graph-structured nonlinear optimization problems. Our framework integrates the modeling package Plasmo.jl (which facilitates the construction and manipulation of graph models) and the nonlinear optimization solver MadNLP.jl (which provides capabilities for exploiting graph structures to accelerate solution). We illustrate with a simple example how model construction and manipulation can be performed in an intuitive manner using Plasmo.jl and how the model structure can be exploited by MadNLP.jl. We also demonstrate the scalability of the framework by targeting a large-scale, stochastic gas network problem that contains over 1.7 million variables.</description><subject>Process Systems Engineering</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1j01Pg0AQhjdGE7F698gPEJxdGFgPHprGVk1jD-qZDOwSt_KVAWL01xfSXj29h_dj5hHiVkIoQcl7KvrQ2YJDVYBUGJ0JT6KCACHGc-GB1jpArfFSXPX9HgAQ49gTj0v_dawc-Wum2v60_O2XLfsbpu4reB94LIaRrfHf2qZyjSX2d93gavdHg2uba3FRUtXbm5MuxOf66WP1HGx3m5fVchtQpNQw3UVbKnpQqkSAFA2kMeZgEp2qPAGyBVibJzonadIkt4qgjA1GFohSY3S0EHDcLbjte7Zl1rGriX8zCdmMn0342YyfnfCnyt2xMjv7duRmevD_-AFeM17g</recordid><startdate>20220706</startdate><enddate>20220706</enddate><creator>Cole, David L.</creator><creator>Shin, Sungho</creator><creator>Zavala, Victor M.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5744-7378</orcidid></search><sort><creationdate>20220706</creationdate><title>A Julia Framework for Graph-Structured Nonlinear Optimization</title><author>Cole, David L. ; Shin, Sungho ; Zavala, Victor M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-585ef2a922f50075d0745b0d6872b60aec0eeb68ba1d76be2a0f4d53e0aa7dd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Process Systems Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cole, David L.</creatorcontrib><creatorcontrib>Shin, Sungho</creatorcontrib><creatorcontrib>Zavala, Victor M.</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cole, David L.</au><au>Shin, Sungho</au><au>Zavala, Victor M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Julia Framework for Graph-Structured Nonlinear Optimization</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2022-07-06</date><risdate>2022</risdate><volume>61</volume><issue>26</issue><spage>9366</spage><epage>9380</epage><pages>9366-9380</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>Graph theory provides a convenient framework for modeling and solving structured optimization problems. Under this framework, the modeler can arrange/assemble the components of an optimization model (variables, constraints, objective functions, and data) within nodes and edges of a graph, and this representation can be used to visualize, manipulate, and solve the problem. In this work, we present a Julia framework for modeling and solving graph-structured nonlinear optimization problems. Our framework integrates the modeling package Plasmo.jl (which facilitates the construction and manipulation of graph models) and the nonlinear optimization solver MadNLP.jl (which provides capabilities for exploiting graph structures to accelerate solution). We illustrate with a simple example how model construction and manipulation can be performed in an intuitive manner using Plasmo.jl and how the model structure can be exploited by MadNLP.jl. We also demonstrate the scalability of the framework by targeting a large-scale, stochastic gas network problem that contains over 1.7 million variables.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.2c01253</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5744-7378</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2022-07, Vol.61 (26), p.9366-9380
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_acs_iecr_2c01253
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Process Systems Engineering
title A Julia Framework for Graph-Structured Nonlinear Optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A00%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Julia%20Framework%20for%20Graph-Structured%20Nonlinear%20Optimization&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Cole,%20David%20L.&rft.date=2022-07-06&rft.volume=61&rft.issue=26&rft.spage=9366&rft.epage=9380&rft.pages=9366-9380&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.2c01253&rft_dat=%3Cacs_cross%3Ee14519102%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a322t-585ef2a922f50075d0745b0d6872b60aec0eeb68ba1d76be2a0f4d53e0aa7dd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true