Loading…
Chlorine–Nitrogen Doped Hollow Polyhedral Carbon-Based Catalysts for High Performance Zinc–Air Batteries
It is significant to exploit low-cost and high-activity electrocatalysts for practical zinc–air batteries (ZABs). Herein, a chlorine-nitrogen codoped hollow carbon polyhedron catalyst (Cl-NC-1000) is synthesized by the thermal decomposition of ZIF precursors with a template and intercalating agent o...
Saved in:
Published in: | Industrial & engineering chemistry research 2024-11, Vol.63 (45), p.19498-19505 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It is significant to exploit low-cost and high-activity electrocatalysts for practical zinc–air batteries (ZABs). Herein, a chlorine-nitrogen codoped hollow carbon polyhedron catalyst (Cl-NC-1000) is synthesized by the thermal decomposition of ZIF precursors with a template and intercalating agent of NaCl. Experimental results demonstrate that the synergistic effect of chlorine and nitrogen adjusts the electronic structure of neighboring carbon atoms, facilitating the capturing/releasing of oxygen reduction reaction (ORR) intermediates, thereby reinforcing the intrinsic activity. As a result, the fabricated Cl-NC-1000 catalyst exhibits an outstanding ORR performance, including catalytic activity, selectivity, and stability. When applied in ZABs, the Cl-NC-1000 catalyst maintains a voltage difference of ca. 0.96 V at 5 mA cm–2 and cycles over 300 h with an energy efficiency of 53%, superior to those of commercial Pt/C-based rechargeable ZABs. This work provides an efficient strategy for designing cost-effective and high-activity nonmetallic ORR catalysts. |
---|---|
ISSN: | 0888-5885 1520-5045 |
DOI: | 10.1021/acs.iecr.4c03089 |