Loading…
Promotion Effect of Alkali Metal Hydroxides on Polymer-Stabilized Pd Nanoparticles for Selective Hydrogenation of C–C Triple Bonds in Alkynols
Postimpregnation of Pd nanoparticles (NPs) stabilized within hyper-cross-linked polystyrene with sodium or potassium hydroxides of optimal concentration was found to significantly increase the catalytic activity for the partial hydrogenation of the C–C triple bond in 2-methyl-3-butyn-2-ol at ambient...
Saved in:
Published in: | Industrial & engineering chemistry research 2017-11, Vol.56 (45), p.13219-13227 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Postimpregnation of Pd nanoparticles (NPs) stabilized within hyper-cross-linked polystyrene with sodium or potassium hydroxides of optimal concentration was found to significantly increase the catalytic activity for the partial hydrogenation of the C–C triple bond in 2-methyl-3-butyn-2-ol at ambient hydrogen pressure. The alkali metal hydroxide accelerates the transformation of the residual Pd(II) salt into Pd(0) NPs and diminishes the reaction induction period. In addition, the selectivity to the desired 2-methyl-3-buten-2-ol increases with the K- and Na-doped catalysts from 97.0 up to 99.5%. This effect was assigned to interactions of the alkali metal ions with the Pd NPs surfaces resulting in the sites’ separation and a change of reactants adsorption. |
---|---|
ISSN: | 0888-5885 1520-5045 |
DOI: | 10.1021/acs.iecr.7b01612 |