Loading…
Fabrication of Mechanically Strong Honeycombs with Aerogel Cores
Honeycomb aerogel composites were fabricated by reinforcing selected regions of a native aerogel matrix using photopolymerization. First, alcogels were synthesized by hydrolysis–condensation of a siloxane, and by adding a multifunctional acrylic monomer and a visible-light initiator to the gelation...
Saved in:
Published in: | Industrial & engineering chemistry research 2018-01, Vol.57 (4), p.1197-1206 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Honeycomb aerogel composites were fabricated by reinforcing selected regions of a native aerogel matrix using photopolymerization. First, alcogels were synthesized by hydrolysis–condensation of a siloxane, and by adding a multifunctional acrylic monomer and a visible-light initiator to the gelation solution. Alcogels were then placed on a programmable translation stage and exposed to a laser. Polymerization and mechanical reinforcement were induced in the exposed regions. After exposure alcogels were dried supercritically. Thermal conductivity and out-of-plane modulus of the resulting honeycombs could be varied between values typical of native aerogels (11 mW/mK and 0.75 MPa) and those of uniformly polymerized composites (65.8 mW/mK and 36.26 MPa) by varying the translation stage speed between 2 and 3 mm/s. The results were interpreted using a rule-of-mixtures model. The mechanical properties of the composites were also investigated using finite element analysis. |
---|---|
ISSN: | 0888-5885 1520-5045 |
DOI: | 10.1021/acs.iecr.7b04058 |