Loading…
Evaluation of a Hybrid Clustering Approach for a Benchmark Industrial System
The paper discusses a novel algorithm for classifying data represented through multivariate time series based on similarity metrics. To improve over the performance of existent classification methods based on single similarity, the method used in this study is based on a combination between the prin...
Saved in:
Published in: | Industrial & engineering chemistry research 2018-08, Vol.57 (32), p.11039-11049 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a317t-51fa6664e5fde4de7fdd756253d830eca4309dbce8155d65dd34f71eb3eb24843 |
---|---|
cites | cdi_FETCH-LOGICAL-a317t-51fa6664e5fde4de7fdd756253d830eca4309dbce8155d65dd34f71eb3eb24843 |
container_end_page | 11049 |
container_issue | 32 |
container_start_page | 11039 |
container_title | Industrial & engineering chemistry research |
container_volume | 57 |
creator | Fontes, Cristiano Hora Budman, Hector |
description | The paper discusses a novel algorithm for classifying data represented through multivariate time series based on similarity metrics. To improve over the performance of existent classification methods based on single similarity, the method used in this study is based on a combination between the principal component analysis similarity factor and the average-based Euclidian distance within a fuzzy clustering approach. Additionally, an approach is proposed to cope with the changes of these metrics over the time window, improving the similarity analysis between the objects. The method is applied to the Tennessee Eastman process, a well-known benchmark industrial system used to compare various fault detection and diagnosis approaches. The results were compared with standards multivariate techniques showing the efficiency and flexibility of the proposed method in fault detection and classification problems, when considering different types of failures, process variables, and changes in operating conditions. |
doi_str_mv | 10.1021/acs.iecr.8b00429 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_8b00429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d93035547</sourcerecordid><originalsourceid>FETCH-LOGICAL-a317t-51fa6664e5fde4de7fdd756253d830eca4309dbce8155d65dd34f71eb3eb24843</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqWwM_oHkPAc-yXuWKJCK1ViAObI8QdNSZPIbpD673HUrkxveOdeXR1CHhmkDDL2rHRIG6t9KmsAkS2uyIxhBgmCwGsyAyllglLiLbkLYQ8AiELMyHb1q9pRHZu-o72jiq5PtW8MLdsxHK1vum-6HAbfK72jrvcReLGd3h2U_6GbzkTIN6qlH6dIH-7JjVNtsA-XOydfr6vPcp1s39825XKbKM6KY4LMqTzPhUVnrDC2cMYUmGfIjeRgtRIcFqbWVjJEk6MxXLiC2ZrbOhNS8DmBc6_2fQjeumrwTZx0qhhUk40q2qgmG9XFRow8nSPTZ9-PvosD_8f_AAXjZFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evaluation of a Hybrid Clustering Approach for a Benchmark Industrial System</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Fontes, Cristiano Hora ; Budman, Hector</creator><creatorcontrib>Fontes, Cristiano Hora ; Budman, Hector</creatorcontrib><description>The paper discusses a novel algorithm for classifying data represented through multivariate time series based on similarity metrics. To improve over the performance of existent classification methods based on single similarity, the method used in this study is based on a combination between the principal component analysis similarity factor and the average-based Euclidian distance within a fuzzy clustering approach. Additionally, an approach is proposed to cope with the changes of these metrics over the time window, improving the similarity analysis between the objects. The method is applied to the Tennessee Eastman process, a well-known benchmark industrial system used to compare various fault detection and diagnosis approaches. The results were compared with standards multivariate techniques showing the efficiency and flexibility of the proposed method in fault detection and classification problems, when considering different types of failures, process variables, and changes in operating conditions.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.8b00429</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Industrial & engineering chemistry research, 2018-08, Vol.57 (32), p.11039-11049</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a317t-51fa6664e5fde4de7fdd756253d830eca4309dbce8155d65dd34f71eb3eb24843</citedby><cites>FETCH-LOGICAL-a317t-51fa6664e5fde4de7fdd756253d830eca4309dbce8155d65dd34f71eb3eb24843</cites><orcidid>0000-0001-8020-6815 ; 0000-0002-0773-7457</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Fontes, Cristiano Hora</creatorcontrib><creatorcontrib>Budman, Hector</creatorcontrib><title>Evaluation of a Hybrid Clustering Approach for a Benchmark Industrial System</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>The paper discusses a novel algorithm for classifying data represented through multivariate time series based on similarity metrics. To improve over the performance of existent classification methods based on single similarity, the method used in this study is based on a combination between the principal component analysis similarity factor and the average-based Euclidian distance within a fuzzy clustering approach. Additionally, an approach is proposed to cope with the changes of these metrics over the time window, improving the similarity analysis between the objects. The method is applied to the Tennessee Eastman process, a well-known benchmark industrial system used to compare various fault detection and diagnosis approaches. The results were compared with standards multivariate techniques showing the efficiency and flexibility of the proposed method in fault detection and classification problems, when considering different types of failures, process variables, and changes in operating conditions.</description><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqWwM_oHkPAc-yXuWKJCK1ViAObI8QdNSZPIbpD673HUrkxveOdeXR1CHhmkDDL2rHRIG6t9KmsAkS2uyIxhBgmCwGsyAyllglLiLbkLYQ8AiELMyHb1q9pRHZu-o72jiq5PtW8MLdsxHK1vum-6HAbfK72jrvcReLGd3h2U_6GbzkTIN6qlH6dIH-7JjVNtsA-XOydfr6vPcp1s39825XKbKM6KY4LMqTzPhUVnrDC2cMYUmGfIjeRgtRIcFqbWVjJEk6MxXLiC2ZrbOhNS8DmBc6_2fQjeumrwTZx0qhhUk40q2qgmG9XFRow8nSPTZ9-PvosD_8f_AAXjZFY</recordid><startdate>20180815</startdate><enddate>20180815</enddate><creator>Fontes, Cristiano Hora</creator><creator>Budman, Hector</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8020-6815</orcidid><orcidid>https://orcid.org/0000-0002-0773-7457</orcidid></search><sort><creationdate>20180815</creationdate><title>Evaluation of a Hybrid Clustering Approach for a Benchmark Industrial System</title><author>Fontes, Cristiano Hora ; Budman, Hector</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a317t-51fa6664e5fde4de7fdd756253d830eca4309dbce8155d65dd34f71eb3eb24843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fontes, Cristiano Hora</creatorcontrib><creatorcontrib>Budman, Hector</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fontes, Cristiano Hora</au><au>Budman, Hector</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of a Hybrid Clustering Approach for a Benchmark Industrial System</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2018-08-15</date><risdate>2018</risdate><volume>57</volume><issue>32</issue><spage>11039</spage><epage>11049</epage><pages>11039-11049</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>The paper discusses a novel algorithm for classifying data represented through multivariate time series based on similarity metrics. To improve over the performance of existent classification methods based on single similarity, the method used in this study is based on a combination between the principal component analysis similarity factor and the average-based Euclidian distance within a fuzzy clustering approach. Additionally, an approach is proposed to cope with the changes of these metrics over the time window, improving the similarity analysis between the objects. The method is applied to the Tennessee Eastman process, a well-known benchmark industrial system used to compare various fault detection and diagnosis approaches. The results were compared with standards multivariate techniques showing the efficiency and flexibility of the proposed method in fault detection and classification problems, when considering different types of failures, process variables, and changes in operating conditions.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.8b00429</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8020-6815</orcidid><orcidid>https://orcid.org/0000-0002-0773-7457</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2018-08, Vol.57 (32), p.11039-11049 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_iecr_8b00429 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Evaluation of a Hybrid Clustering Approach for a Benchmark Industrial System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A04%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20a%20Hybrid%20Clustering%20Approach%20for%20a%20Benchmark%20Industrial%20System&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Fontes,%20Cristiano%20Hora&rft.date=2018-08-15&rft.volume=57&rft.issue=32&rft.spage=11039&rft.epage=11049&rft.pages=11039-11049&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.8b00429&rft_dat=%3Cacs_cross%3Ed93035547%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a317t-51fa6664e5fde4de7fdd756253d830eca4309dbce8155d65dd34f71eb3eb24843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |