Loading…

Evaluation of a Hybrid Clustering Approach for a Benchmark Industrial System

The paper discusses a novel algorithm for classifying data represented through multivariate time series based on similarity metrics. To improve over the performance of existent classification methods based on single similarity, the method used in this study is based on a combination between the prin...

Full description

Saved in:
Bibliographic Details
Published in:Industrial & engineering chemistry research 2018-08, Vol.57 (32), p.11039-11049
Main Authors: Fontes, Cristiano Hora, Budman, Hector
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a317t-51fa6664e5fde4de7fdd756253d830eca4309dbce8155d65dd34f71eb3eb24843
cites cdi_FETCH-LOGICAL-a317t-51fa6664e5fde4de7fdd756253d830eca4309dbce8155d65dd34f71eb3eb24843
container_end_page 11049
container_issue 32
container_start_page 11039
container_title Industrial & engineering chemistry research
container_volume 57
creator Fontes, Cristiano Hora
Budman, Hector
description The paper discusses a novel algorithm for classifying data represented through multivariate time series based on similarity metrics. To improve over the performance of existent classification methods based on single similarity, the method used in this study is based on a combination between the principal component analysis similarity factor and the average-based Euclidian distance within a fuzzy clustering approach. Additionally, an approach is proposed to cope with the changes of these metrics over the time window, improving the similarity analysis between the objects. The method is applied to the Tennessee Eastman process, a well-known benchmark industrial system used to compare various fault detection and diagnosis approaches. The results were compared with standards multivariate techniques showing the efficiency and flexibility of the proposed method in fault detection and classification problems, when considering different types of failures, process variables, and changes in operating conditions.
doi_str_mv 10.1021/acs.iecr.8b00429
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_8b00429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d93035547</sourcerecordid><originalsourceid>FETCH-LOGICAL-a317t-51fa6664e5fde4de7fdd756253d830eca4309dbce8155d65dd34f71eb3eb24843</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqWwM_oHkPAc-yXuWKJCK1ViAObI8QdNSZPIbpD673HUrkxveOdeXR1CHhmkDDL2rHRIG6t9KmsAkS2uyIxhBgmCwGsyAyllglLiLbkLYQ8AiELMyHb1q9pRHZu-o72jiq5PtW8MLdsxHK1vum-6HAbfK72jrvcReLGd3h2U_6GbzkTIN6qlH6dIH-7JjVNtsA-XOydfr6vPcp1s39825XKbKM6KY4LMqTzPhUVnrDC2cMYUmGfIjeRgtRIcFqbWVjJEk6MxXLiC2ZrbOhNS8DmBc6_2fQjeumrwTZx0qhhUk40q2qgmG9XFRow8nSPTZ9-PvosD_8f_AAXjZFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evaluation of a Hybrid Clustering Approach for a Benchmark Industrial System</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Fontes, Cristiano Hora ; Budman, Hector</creator><creatorcontrib>Fontes, Cristiano Hora ; Budman, Hector</creatorcontrib><description>The paper discusses a novel algorithm for classifying data represented through multivariate time series based on similarity metrics. To improve over the performance of existent classification methods based on single similarity, the method used in this study is based on a combination between the principal component analysis similarity factor and the average-based Euclidian distance within a fuzzy clustering approach. Additionally, an approach is proposed to cope with the changes of these metrics over the time window, improving the similarity analysis between the objects. The method is applied to the Tennessee Eastman process, a well-known benchmark industrial system used to compare various fault detection and diagnosis approaches. The results were compared with standards multivariate techniques showing the efficiency and flexibility of the proposed method in fault detection and classification problems, when considering different types of failures, process variables, and changes in operating conditions.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.8b00429</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Industrial &amp; engineering chemistry research, 2018-08, Vol.57 (32), p.11039-11049</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a317t-51fa6664e5fde4de7fdd756253d830eca4309dbce8155d65dd34f71eb3eb24843</citedby><cites>FETCH-LOGICAL-a317t-51fa6664e5fde4de7fdd756253d830eca4309dbce8155d65dd34f71eb3eb24843</cites><orcidid>0000-0001-8020-6815 ; 0000-0002-0773-7457</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Fontes, Cristiano Hora</creatorcontrib><creatorcontrib>Budman, Hector</creatorcontrib><title>Evaluation of a Hybrid Clustering Approach for a Benchmark Industrial System</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>The paper discusses a novel algorithm for classifying data represented through multivariate time series based on similarity metrics. To improve over the performance of existent classification methods based on single similarity, the method used in this study is based on a combination between the principal component analysis similarity factor and the average-based Euclidian distance within a fuzzy clustering approach. Additionally, an approach is proposed to cope with the changes of these metrics over the time window, improving the similarity analysis between the objects. The method is applied to the Tennessee Eastman process, a well-known benchmark industrial system used to compare various fault detection and diagnosis approaches. The results were compared with standards multivariate techniques showing the efficiency and flexibility of the proposed method in fault detection and classification problems, when considering different types of failures, process variables, and changes in operating conditions.</description><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqWwM_oHkPAc-yXuWKJCK1ViAObI8QdNSZPIbpD673HUrkxveOdeXR1CHhmkDDL2rHRIG6t9KmsAkS2uyIxhBgmCwGsyAyllglLiLbkLYQ8AiELMyHb1q9pRHZu-o72jiq5PtW8MLdsxHK1vum-6HAbfK72jrvcReLGd3h2U_6GbzkTIN6qlH6dIH-7JjVNtsA-XOydfr6vPcp1s39825XKbKM6KY4LMqTzPhUVnrDC2cMYUmGfIjeRgtRIcFqbWVjJEk6MxXLiC2ZrbOhNS8DmBc6_2fQjeumrwTZx0qhhUk40q2qgmG9XFRow8nSPTZ9-PvosD_8f_AAXjZFY</recordid><startdate>20180815</startdate><enddate>20180815</enddate><creator>Fontes, Cristiano Hora</creator><creator>Budman, Hector</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8020-6815</orcidid><orcidid>https://orcid.org/0000-0002-0773-7457</orcidid></search><sort><creationdate>20180815</creationdate><title>Evaluation of a Hybrid Clustering Approach for a Benchmark Industrial System</title><author>Fontes, Cristiano Hora ; Budman, Hector</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a317t-51fa6664e5fde4de7fdd756253d830eca4309dbce8155d65dd34f71eb3eb24843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fontes, Cristiano Hora</creatorcontrib><creatorcontrib>Budman, Hector</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fontes, Cristiano Hora</au><au>Budman, Hector</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of a Hybrid Clustering Approach for a Benchmark Industrial System</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2018-08-15</date><risdate>2018</risdate><volume>57</volume><issue>32</issue><spage>11039</spage><epage>11049</epage><pages>11039-11049</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>The paper discusses a novel algorithm for classifying data represented through multivariate time series based on similarity metrics. To improve over the performance of existent classification methods based on single similarity, the method used in this study is based on a combination between the principal component analysis similarity factor and the average-based Euclidian distance within a fuzzy clustering approach. Additionally, an approach is proposed to cope with the changes of these metrics over the time window, improving the similarity analysis between the objects. The method is applied to the Tennessee Eastman process, a well-known benchmark industrial system used to compare various fault detection and diagnosis approaches. The results were compared with standards multivariate techniques showing the efficiency and flexibility of the proposed method in fault detection and classification problems, when considering different types of failures, process variables, and changes in operating conditions.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.8b00429</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8020-6815</orcidid><orcidid>https://orcid.org/0000-0002-0773-7457</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2018-08, Vol.57 (32), p.11039-11049
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_acs_iecr_8b00429
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Evaluation of a Hybrid Clustering Approach for a Benchmark Industrial System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A04%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20a%20Hybrid%20Clustering%20Approach%20for%20a%20Benchmark%20Industrial%20System&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Fontes,%20Cristiano%20Hora&rft.date=2018-08-15&rft.volume=57&rft.issue=32&rft.spage=11039&rft.epage=11049&rft.pages=11039-11049&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.8b00429&rft_dat=%3Cacs_cross%3Ed93035547%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a317t-51fa6664e5fde4de7fdd756253d830eca4309dbce8155d65dd34f71eb3eb24843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true