Loading…
A Deep Learning Approach for Process Data Visualization Using t‑Distributed Stochastic Neighbor Embedding
A generic process visualization method is introduced, which visualizes real-time process information and correlations among variables on a 2D map using parametric t-SNE. As an unsupervised learning method, it learns the mapping by minimizing the Kullback–Leibler divergence between the original high-...
Saved in:
Published in: | Industrial & engineering chemistry research 2019-06, Vol.58 (22), p.9564-9575 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a364t-ec40dcfd7b7b13ffa054839c8cab63e5fa0838d80211a5ff7f716ad7cca8490d3 |
---|---|
cites | cdi_FETCH-LOGICAL-a364t-ec40dcfd7b7b13ffa054839c8cab63e5fa0838d80211a5ff7f716ad7cca8490d3 |
container_end_page | 9575 |
container_issue | 22 |
container_start_page | 9564 |
container_title | Industrial & engineering chemistry research |
container_volume | 58 |
creator | Zhu, Wenbo Webb, Zachary T Mao, Kaitian Romagnoli, José |
description | A generic process visualization method is introduced, which visualizes real-time process information and correlations among variables on a 2D map using parametric t-SNE. As an unsupervised learning method, it learns the mapping by minimizing the Kullback–Leibler divergence between the original high-dimensional space and the latent space using a deep neural network. In practice, it is observed that the original parametric t-SNE method lacks generalization and struggles to visualize unseen operating conditions correctly. In this work, two steps to improve its generalization capacity are proposed. In the first step, the neural network is trained with additional dummy data, which is generated to mimic the possible unseen conditions. Additionally, the structure of the neural network is reformulated with a new activation function that was designed to improve generalization for process data. The capability of the proposed approach was tested on two case studies, the Tennessee Eastman Process (TEP) and an industrial pyrolysis reactor. The results indicate that the proposed approach outperforms conventional methods in visualization as well as generalization capacity for unseen process conditions. |
doi_str_mv | 10.1021/acs.iecr.9b00975 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_9b00975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b935314447</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-ec40dcfd7b7b13ffa054839c8cab63e5fa0838d80211a5ff7f716ad7cca8490d3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWwZ-kDkDJu4sZZVm35kSJAgrKNxn-tS5tEtruAFVfgipyERO2W1Ugz7z3N-wi5ZjBiMGa3qMLIGeVHhQQocn5CBoyPIeGQ8VMyACFEwoXg5-QihA0AcJ5lA_IxpXNjWloa9LWrV3Tatr5Btaa28fTFN8qEQOcYkb67sMet-8LompouQ6-Ov98_cxeid3IfjaavsVFrDNEp-mTcai27kMVOGq079SU5s7gN5uo4h2R5t3ibPSTl8_3jbFommE6ymBiVgVZW5zKXLLUWgWciLZRQKCep4d1CpEKLrjVDbm1uczZBnSuFIitAp0MCh1zlmxC8sVXr3Q79Z8Wg6mFVHayqh1UdYXWWm4Olv2yava-7B_-X_wHYyXEq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Deep Learning Approach for Process Data Visualization Using t‑Distributed Stochastic Neighbor Embedding</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Zhu, Wenbo ; Webb, Zachary T ; Mao, Kaitian ; Romagnoli, José</creator><creatorcontrib>Zhu, Wenbo ; Webb, Zachary T ; Mao, Kaitian ; Romagnoli, José</creatorcontrib><description>A generic process visualization method is introduced, which visualizes real-time process information and correlations among variables on a 2D map using parametric t-SNE. As an unsupervised learning method, it learns the mapping by minimizing the Kullback–Leibler divergence between the original high-dimensional space and the latent space using a deep neural network. In practice, it is observed that the original parametric t-SNE method lacks generalization and struggles to visualize unseen operating conditions correctly. In this work, two steps to improve its generalization capacity are proposed. In the first step, the neural network is trained with additional dummy data, which is generated to mimic the possible unseen conditions. Additionally, the structure of the neural network is reformulated with a new activation function that was designed to improve generalization for process data. The capability of the proposed approach was tested on two case studies, the Tennessee Eastman Process (TEP) and an industrial pyrolysis reactor. The results indicate that the proposed approach outperforms conventional methods in visualization as well as generalization capacity for unseen process conditions.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.9b00975</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Industrial & engineering chemistry research, 2019-06, Vol.58 (22), p.9564-9575</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-ec40dcfd7b7b13ffa054839c8cab63e5fa0838d80211a5ff7f716ad7cca8490d3</citedby><cites>FETCH-LOGICAL-a364t-ec40dcfd7b7b13ffa054839c8cab63e5fa0838d80211a5ff7f716ad7cca8490d3</cites><orcidid>0000-0003-3682-1305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhu, Wenbo</creatorcontrib><creatorcontrib>Webb, Zachary T</creatorcontrib><creatorcontrib>Mao, Kaitian</creatorcontrib><creatorcontrib>Romagnoli, José</creatorcontrib><title>A Deep Learning Approach for Process Data Visualization Using t‑Distributed Stochastic Neighbor Embedding</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>A generic process visualization method is introduced, which visualizes real-time process information and correlations among variables on a 2D map using parametric t-SNE. As an unsupervised learning method, it learns the mapping by minimizing the Kullback–Leibler divergence between the original high-dimensional space and the latent space using a deep neural network. In practice, it is observed that the original parametric t-SNE method lacks generalization and struggles to visualize unseen operating conditions correctly. In this work, two steps to improve its generalization capacity are proposed. In the first step, the neural network is trained with additional dummy data, which is generated to mimic the possible unseen conditions. Additionally, the structure of the neural network is reformulated with a new activation function that was designed to improve generalization for process data. The capability of the proposed approach was tested on two case studies, the Tennessee Eastman Process (TEP) and an industrial pyrolysis reactor. The results indicate that the proposed approach outperforms conventional methods in visualization as well as generalization capacity for unseen process conditions.</description><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWwZ-kDkDJu4sZZVm35kSJAgrKNxn-tS5tEtruAFVfgipyERO2W1Ugz7z3N-wi5ZjBiMGa3qMLIGeVHhQQocn5CBoyPIeGQ8VMyACFEwoXg5-QihA0AcJ5lA_IxpXNjWloa9LWrV3Tatr5Btaa28fTFN8qEQOcYkb67sMet-8LompouQ6-Ov98_cxeid3IfjaavsVFrDNEp-mTcai27kMVOGq079SU5s7gN5uo4h2R5t3ibPSTl8_3jbFommE6ymBiVgVZW5zKXLLUWgWciLZRQKCep4d1CpEKLrjVDbm1uczZBnSuFIitAp0MCh1zlmxC8sVXr3Q79Z8Wg6mFVHayqh1UdYXWWm4Olv2yava-7B_-X_wHYyXEq</recordid><startdate>20190605</startdate><enddate>20190605</enddate><creator>Zhu, Wenbo</creator><creator>Webb, Zachary T</creator><creator>Mao, Kaitian</creator><creator>Romagnoli, José</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3682-1305</orcidid></search><sort><creationdate>20190605</creationdate><title>A Deep Learning Approach for Process Data Visualization Using t‑Distributed Stochastic Neighbor Embedding</title><author>Zhu, Wenbo ; Webb, Zachary T ; Mao, Kaitian ; Romagnoli, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-ec40dcfd7b7b13ffa054839c8cab63e5fa0838d80211a5ff7f716ad7cca8490d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Wenbo</creatorcontrib><creatorcontrib>Webb, Zachary T</creatorcontrib><creatorcontrib>Mao, Kaitian</creatorcontrib><creatorcontrib>Romagnoli, José</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Wenbo</au><au>Webb, Zachary T</au><au>Mao, Kaitian</au><au>Romagnoli, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Learning Approach for Process Data Visualization Using t‑Distributed Stochastic Neighbor Embedding</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2019-06-05</date><risdate>2019</risdate><volume>58</volume><issue>22</issue><spage>9564</spage><epage>9575</epage><pages>9564-9575</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>A generic process visualization method is introduced, which visualizes real-time process information and correlations among variables on a 2D map using parametric t-SNE. As an unsupervised learning method, it learns the mapping by minimizing the Kullback–Leibler divergence between the original high-dimensional space and the latent space using a deep neural network. In practice, it is observed that the original parametric t-SNE method lacks generalization and struggles to visualize unseen operating conditions correctly. In this work, two steps to improve its generalization capacity are proposed. In the first step, the neural network is trained with additional dummy data, which is generated to mimic the possible unseen conditions. Additionally, the structure of the neural network is reformulated with a new activation function that was designed to improve generalization for process data. The capability of the proposed approach was tested on two case studies, the Tennessee Eastman Process (TEP) and an industrial pyrolysis reactor. The results indicate that the proposed approach outperforms conventional methods in visualization as well as generalization capacity for unseen process conditions.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.9b00975</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3682-1305</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2019-06, Vol.58 (22), p.9564-9575 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_iecr_9b00975 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | A Deep Learning Approach for Process Data Visualization Using t‑Distributed Stochastic Neighbor Embedding |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Learning%20Approach%20for%20Process%20Data%20Visualization%20Using%20t%E2%80%91Distributed%20Stochastic%20Neighbor%20Embedding&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Zhu,%20Wenbo&rft.date=2019-06-05&rft.volume=58&rft.issue=22&rft.spage=9564&rft.epage=9575&rft.pages=9564-9575&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.9b00975&rft_dat=%3Cacs_cross%3Eb935314447%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a364t-ec40dcfd7b7b13ffa054839c8cab63e5fa0838d80211a5ff7f716ad7cca8490d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |