Loading…

A Deep Learning Approach for Process Data Visualization Using t‑Distributed Stochastic Neighbor Embedding

A generic process visualization method is introduced, which visualizes real-time process information and correlations among variables on a 2D map using parametric t-SNE. As an unsupervised learning method, it learns the mapping by minimizing the Kullback–Leibler divergence between the original high-...

Full description

Saved in:
Bibliographic Details
Published in:Industrial & engineering chemistry research 2019-06, Vol.58 (22), p.9564-9575
Main Authors: Zhu, Wenbo, Webb, Zachary T, Mao, Kaitian, Romagnoli, José
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a364t-ec40dcfd7b7b13ffa054839c8cab63e5fa0838d80211a5ff7f716ad7cca8490d3
cites cdi_FETCH-LOGICAL-a364t-ec40dcfd7b7b13ffa054839c8cab63e5fa0838d80211a5ff7f716ad7cca8490d3
container_end_page 9575
container_issue 22
container_start_page 9564
container_title Industrial & engineering chemistry research
container_volume 58
creator Zhu, Wenbo
Webb, Zachary T
Mao, Kaitian
Romagnoli, José
description A generic process visualization method is introduced, which visualizes real-time process information and correlations among variables on a 2D map using parametric t-SNE. As an unsupervised learning method, it learns the mapping by minimizing the Kullback–Leibler divergence between the original high-dimensional space and the latent space using a deep neural network. In practice, it is observed that the original parametric t-SNE method lacks generalization and struggles to visualize unseen operating conditions correctly. In this work, two steps to improve its generalization capacity are proposed. In the first step, the neural network is trained with additional dummy data, which is generated to mimic the possible unseen conditions. Additionally, the structure of the neural network is reformulated with a new activation function that was designed to improve generalization for process data. The capability of the proposed approach was tested on two case studies, the Tennessee Eastman Process (TEP) and an industrial pyrolysis reactor. The results indicate that the proposed approach outperforms conventional methods in visualization as well as generalization capacity for unseen process conditions.
doi_str_mv 10.1021/acs.iecr.9b00975
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_9b00975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b935314447</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-ec40dcfd7b7b13ffa054839c8cab63e5fa0838d80211a5ff7f716ad7cca8490d3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWwZ-kDkDJu4sZZVm35kSJAgrKNxn-tS5tEtruAFVfgipyERO2W1Ugz7z3N-wi5ZjBiMGa3qMLIGeVHhQQocn5CBoyPIeGQ8VMyACFEwoXg5-QihA0AcJ5lA_IxpXNjWloa9LWrV3Tatr5Btaa28fTFN8qEQOcYkb67sMet-8LompouQ6-Ov98_cxeid3IfjaavsVFrDNEp-mTcai27kMVOGq079SU5s7gN5uo4h2R5t3ibPSTl8_3jbFommE6ymBiVgVZW5zKXLLUWgWciLZRQKCep4d1CpEKLrjVDbm1uczZBnSuFIitAp0MCh1zlmxC8sVXr3Q79Z8Wg6mFVHayqh1UdYXWWm4Olv2yava-7B_-X_wHYyXEq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Deep Learning Approach for Process Data Visualization Using t‑Distributed Stochastic Neighbor Embedding</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zhu, Wenbo ; Webb, Zachary T ; Mao, Kaitian ; Romagnoli, José</creator><creatorcontrib>Zhu, Wenbo ; Webb, Zachary T ; Mao, Kaitian ; Romagnoli, José</creatorcontrib><description>A generic process visualization method is introduced, which visualizes real-time process information and correlations among variables on a 2D map using parametric t-SNE. As an unsupervised learning method, it learns the mapping by minimizing the Kullback–Leibler divergence between the original high-dimensional space and the latent space using a deep neural network. In practice, it is observed that the original parametric t-SNE method lacks generalization and struggles to visualize unseen operating conditions correctly. In this work, two steps to improve its generalization capacity are proposed. In the first step, the neural network is trained with additional dummy data, which is generated to mimic the possible unseen conditions. Additionally, the structure of the neural network is reformulated with a new activation function that was designed to improve generalization for process data. The capability of the proposed approach was tested on two case studies, the Tennessee Eastman Process (TEP) and an industrial pyrolysis reactor. The results indicate that the proposed approach outperforms conventional methods in visualization as well as generalization capacity for unseen process conditions.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.9b00975</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Industrial &amp; engineering chemistry research, 2019-06, Vol.58 (22), p.9564-9575</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-ec40dcfd7b7b13ffa054839c8cab63e5fa0838d80211a5ff7f716ad7cca8490d3</citedby><cites>FETCH-LOGICAL-a364t-ec40dcfd7b7b13ffa054839c8cab63e5fa0838d80211a5ff7f716ad7cca8490d3</cites><orcidid>0000-0003-3682-1305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhu, Wenbo</creatorcontrib><creatorcontrib>Webb, Zachary T</creatorcontrib><creatorcontrib>Mao, Kaitian</creatorcontrib><creatorcontrib>Romagnoli, José</creatorcontrib><title>A Deep Learning Approach for Process Data Visualization Using t‑Distributed Stochastic Neighbor Embedding</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>A generic process visualization method is introduced, which visualizes real-time process information and correlations among variables on a 2D map using parametric t-SNE. As an unsupervised learning method, it learns the mapping by minimizing the Kullback–Leibler divergence between the original high-dimensional space and the latent space using a deep neural network. In practice, it is observed that the original parametric t-SNE method lacks generalization and struggles to visualize unseen operating conditions correctly. In this work, two steps to improve its generalization capacity are proposed. In the first step, the neural network is trained with additional dummy data, which is generated to mimic the possible unseen conditions. Additionally, the structure of the neural network is reformulated with a new activation function that was designed to improve generalization for process data. The capability of the proposed approach was tested on two case studies, the Tennessee Eastman Process (TEP) and an industrial pyrolysis reactor. The results indicate that the proposed approach outperforms conventional methods in visualization as well as generalization capacity for unseen process conditions.</description><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWwZ-kDkDJu4sZZVm35kSJAgrKNxn-tS5tEtruAFVfgipyERO2W1Ugz7z3N-wi5ZjBiMGa3qMLIGeVHhQQocn5CBoyPIeGQ8VMyACFEwoXg5-QihA0AcJ5lA_IxpXNjWloa9LWrV3Tatr5Btaa28fTFN8qEQOcYkb67sMet-8LompouQ6-Ov98_cxeid3IfjaavsVFrDNEp-mTcai27kMVOGq079SU5s7gN5uo4h2R5t3ibPSTl8_3jbFommE6ymBiVgVZW5zKXLLUWgWciLZRQKCep4d1CpEKLrjVDbm1uczZBnSuFIitAp0MCh1zlmxC8sVXr3Q79Z8Wg6mFVHayqh1UdYXWWm4Olv2yava-7B_-X_wHYyXEq</recordid><startdate>20190605</startdate><enddate>20190605</enddate><creator>Zhu, Wenbo</creator><creator>Webb, Zachary T</creator><creator>Mao, Kaitian</creator><creator>Romagnoli, José</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3682-1305</orcidid></search><sort><creationdate>20190605</creationdate><title>A Deep Learning Approach for Process Data Visualization Using t‑Distributed Stochastic Neighbor Embedding</title><author>Zhu, Wenbo ; Webb, Zachary T ; Mao, Kaitian ; Romagnoli, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-ec40dcfd7b7b13ffa054839c8cab63e5fa0838d80211a5ff7f716ad7cca8490d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Wenbo</creatorcontrib><creatorcontrib>Webb, Zachary T</creatorcontrib><creatorcontrib>Mao, Kaitian</creatorcontrib><creatorcontrib>Romagnoli, José</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Wenbo</au><au>Webb, Zachary T</au><au>Mao, Kaitian</au><au>Romagnoli, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Learning Approach for Process Data Visualization Using t‑Distributed Stochastic Neighbor Embedding</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2019-06-05</date><risdate>2019</risdate><volume>58</volume><issue>22</issue><spage>9564</spage><epage>9575</epage><pages>9564-9575</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>A generic process visualization method is introduced, which visualizes real-time process information and correlations among variables on a 2D map using parametric t-SNE. As an unsupervised learning method, it learns the mapping by minimizing the Kullback–Leibler divergence between the original high-dimensional space and the latent space using a deep neural network. In practice, it is observed that the original parametric t-SNE method lacks generalization and struggles to visualize unseen operating conditions correctly. In this work, two steps to improve its generalization capacity are proposed. In the first step, the neural network is trained with additional dummy data, which is generated to mimic the possible unseen conditions. Additionally, the structure of the neural network is reformulated with a new activation function that was designed to improve generalization for process data. The capability of the proposed approach was tested on two case studies, the Tennessee Eastman Process (TEP) and an industrial pyrolysis reactor. The results indicate that the proposed approach outperforms conventional methods in visualization as well as generalization capacity for unseen process conditions.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.9b00975</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3682-1305</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2019-06, Vol.58 (22), p.9564-9575
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_acs_iecr_9b00975
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title A Deep Learning Approach for Process Data Visualization Using t‑Distributed Stochastic Neighbor Embedding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Learning%20Approach%20for%20Process%20Data%20Visualization%20Using%20t%E2%80%91Distributed%20Stochastic%20Neighbor%20Embedding&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Zhu,%20Wenbo&rft.date=2019-06-05&rft.volume=58&rft.issue=22&rft.spage=9564&rft.epage=9575&rft.pages=9564-9575&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.9b00975&rft_dat=%3Cacs_cross%3Eb935314447%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a364t-ec40dcfd7b7b13ffa054839c8cab63e5fa0838d80211a5ff7f716ad7cca8490d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true