Loading…
Thermodynamic Analysis and Feedback Stabilization for Irreversible Liquid–Vapor Systems
In this paper, we investigate the stability analysis and the feedback stabilization design problem for multiphase chemical systems using a nonequilibrium thermodynamics formalism. We first present a compartmental model for multiphase systems far from thermodynamic equilibrium. The modeling framework...
Saved in:
Published in: | Industrial & engineering chemistry research 2020-02, Vol.59 (6), p.2252-2260 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we investigate the stability analysis and the feedback stabilization design problem for multiphase chemical systems using a nonequilibrium thermodynamics formalism. We first present a compartmental model for multiphase systems far from thermodynamic equilibrium. The modeling framework allows us to describe irreversible multiphase systems as a differential-algebraic equation (DAE) system. The differential part of the model corresponds to macroscopic balance equations. The algebraic system of equations represents the interface thermodynamic subsystem that occurs between bulk phases. Integrating the DAE model is equivalent to fixing the degrees of freedom prescribed by the Gibbs phase rule. A linear stability analysis and numerical simulations for the resulting differential-algebraic model are presented. We stabilize the system by fixing the pressure to a constant value. Following this result, we present a feedback structure that fixes the pressure of the system using the proposed modeling framework. |
---|---|
ISSN: | 0888-5885 1520-5045 |
DOI: | 10.1021/acs.iecr.9b04869 |